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Abstract

We examine a dynamic model of voluntary disclosure of multiple pieces of private informa-
tion. In our model, a manager of a firm who may learn multiple signals over time interacts with
a competitive capital market and maximizes payoffs that increase in both period prices. We
show (perhaps surprisingly) that in equilibrium later disclosures are interpreted more favorably
even though the time the manager obtains the signals is independent of the value of the firm.
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1 Introduction

We study a dynamic model of voluntary disclosure of information by a potentially informed agent.

The extant theoretical literature on voluntary disclosure focuses on static models in which an inter-

ested party (e.g., a manager of a firm) may privately observe a single piece of private information

(e.g., Grossman 1981, Milgrom 1981, Dye 1985, and Jung and Kwon 1988) or dynamic models in

which the disclosure timing does not play a role (e.g., Shin 2003, 2006) as the manager’s decision is

what to disclose but not when to disclose it. Corporate disclosure environments, however, are char-

acterized by multi-period and multi-dimensional flows of information from the firm to the market,

where the information asymmetry between the firm and the capital market can be with respect to

whether, when, and what relevant information the firm might have learned. For example, firms

with ongoing R&D projects can obtain new information about the state of their projects, where

the time of information arrival and its content is unobservable to the market. This is common,

for example, in pharmaceutical companies that get results of a drug’s clinical trial (prior to FDA

approval). Such results are not required to be publicly disclosed in a timely manner and investors’

beliefs about the result of a drug’s clinical trial may have a great effect on the firm’s price. The mul-

tidimensional nature of the disclosure game (multi-period and multi-signal) plays a critical role in

shaping the equilibrium; e.g., when deciding whether to disclose one piece of information the agent

must also consider the possibility of learning and potentially disclosing a new piece of information

in the future.

In order to study a dynamic model of voluntary disclosure, we extend Dye’s (1985) and Jung

and Kwon’s (1988) voluntary disclosure model with uncertainty about information endowment to

a two-period, two-signal setting. We describe the potentially informed agent as a manager of a

publicly traded firm. In our model, the manager cares about stock prices in both periods and he

may receive up to two private signals about the value of the firm. In each period, the manager

may voluntarily disclose any subset of the signals he has received but not yet disclosed. Our model

demonstrates how dynamic considerations shape the disclosure strategy of a privately informed

agent and the market reactions to what he releases and when. Absent information asymmetry, the

firm’s price at the end of the second period is independent of the arrival and disclosure times of the

firm’s private information. Nevertheless, we show that in equilibrium, the market price depends

not only on what information has been disclosed so far, but also on when it was disclosed. In
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particular, we show that the price at the end of the second period given disclosure of one signal is

higher if the signal is disclosed later in the game. This result might be counter intuitive, as one

might expect the market to reward the manager for early disclosure of information, since then he

seems less likely to be “hiding something.”

The intuition behind this result can be explained through a variant of the original static vol-

untary disclosure model of Dye (1985). In Dye (1985) the agent either learns nothing or learns a

single signal with some probability. The equilibrium in that model is a threshold strategy where the

price upon non-disclosure matches the price from disclosing the threshold type. Consider a variant

of this game in which the disclosure is done in two steps. In the first step the agent follows an

arbitrary exogenously determined disclosure policy. As a result the set of informed agents who have

not disclosed the signal is some set B. In the second step the agent optimizes so that he reports if

and only if doing so improves his payoff. Again, the equilibrium prices upon upon non-disclosure

matches the price if the threshold type is disclosed. But these prices are affected by disclosure in

the first step, i.e. by the set B. We shall see that the smaller is B (in set-inclusion sense), the

higher the equilibrium non-disclosure price (see Lemma 2 for a proof). For example, consider two

possible cases for the first step where B′ ⊃ B′′, that is, in case of B′′ the agent follows a more

aggressive disclosure in the first step. Our result is that even if all signals in B′\B′′ are higher than

all signals in B′′, the non-disclosure price in case of B′ is lower. Moreover, if some signals in B′\B′′

are smaller than the second-step threshold in case of B′, the ranking of prices given non-disclosure

is strict. In words, the more aggressive disclosure policy results in a higher inference for those who

did not disclose in the second step.

How is this related to our result? Consider the following two histories (on the equilibrium path)

in which the manager discloses only one signal, x. In history 1, the manager disclosed x at t = 1

while in history 2 he disclosed x at t = 2. The equilibrium price at t = 2 depends on the market

belief about the value of the other signal that the manager may have received, signal, y. In period

2, given that x is revealed, the agent reveals y if it increases current price relative to the price given

no disclosure of y, as in the second step in our hypothetical game. The first step in the hypothetical

game corresponds to the option to reveal y at different private histories. For example, to reveal

y at t = 1. Our proof relies on comparing the aggressiveness of the disclosure policy for y under

different scenarios about when the agent learned y given the observed history when he revealed x.

A private history that plays a key role in our proof is the following: if the agent reveals x at t = 1,
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investors know that he could not have known only y at t = 1. However, if he reveals x at t = 2,

they cannot rule out that at t = 1 he knew only y. Moreover, investors know that if the agent

knows only one of the signals at t = 1, he discloses it if it is high enough. So when x is disclosed

at t = 2, it implies that some possible realizations of y can be excluded. Even though the excluded

values are relatively high realizations, it still leads to a positive inference, especially if the revealed

x is high.

In Section 3, we formalize and extend this intuition to establish the main result of the paper.

We argue that later disclosure receives a better interpretation provided that the equilibrium is

monotone and symmetric. To further characterize the strategic behavior and market inferences in

our model, in Section 4 we discuss the main strategic considerations in equilibrium and establish

existence of threshold equilibria under suitable conditions.1.

1.1 Related Literature

The voluntary disclosure literature goes back to Grossman and Hart (1980), Grossman (1981),

and Milgrom (1981), who established the “unraveling result,” which states that under certain

assumptions (including: common knowledge that the agent is privately informed, disclosing is

costless, and information is verifiable) all types disclose their information in equilibrium. In light of

companies’propensity to withhold some private information, the literature on voluntary disclosure

evolved around settings in which the unraveling result does not prevail. The two major streams

of this literature are: (i) assuming that disclosure is costly (pioneered by Jovanovic 1982 and

Verrecchia 1983) and (ii) investors’uncertainty about information endowment (pioneered by Dye

1985 and Jung and Kwon 1988). Our model follows Dye (1985) and Jung and Kwon (1988) and

extends it to a multi-signal and a multi-period setting.

As mentioned in the introduction, in spite of the vast literature on voluntary disclosure, very

little has been done on multi-period settings and on multi-signal settings.2

To the best of our knowledge the only papers that study multi-period voluntary disclosure are

Shin (2003, 2006), Einhorn and Ziv (2008), and Beyer and Dye (2011). The settings studied in

these papers as well as the dynamic considerations of the agents are very different from ours. Shin

1 In most of the existing voluntary disclosure literature (e.g., Verrecchia 1983, Dye 1985, Acharya et al. 2011), the
equilibrium always exists, is unique, and is characterized by a threshold strategy. In our model, due to multiple periods
and signals, existence of a threshold equilibrium is not guaranteed, and therefore we provide suffi cient conditions for
existence (similar to Pae 2005).

2For example, this gap in the literature is pointed out in a survey by Hirst, Koonce, and Venkataraman (2008),
who write “much of the prior research ignores the iterative nature of management earnings forecasts.”
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(2003, 2006) studies a setting in which a firm may learn a binary signal for each of its independent

projects, where each project may either fail or succeed. In this binary setting, Shin (2003, 2006)

studies the “sanitization”strategy, under which the agent discloses only the good (success) news.

The timing of disclosure does not play a role in such a setup. Einhorn and Ziv (2008) study a

setting in which in each period the manager may obtain a single signal about the period’s cash

flows, where at the end of each period the realized cash flows are publicly revealed. If the agent

chooses to disclose his private signal, he incurs some disclosure costs. Acharya, DeMarzo, and

Kremer (2011) examine a dynamic model in which a manager learns one piece of information at

some random time and his decision to disclose it is affected by the release of some external news.

They show that a more negative external signal is more likely to trigger the release of information

by the firm. Perhaps surprisingly this clustering effect is present only in a dynamic model and

not in a static one. Given that the firm may learn only one piece of information the effect that

we study in our paper cannot be examined in their model. Finally, Beyer and Dye (2011) study a

reputation model in which the manager may learn a single private signal in each of the two periods.

The manager can be either “forthcoming” and disclose any information he learns or he may be

“strategic.”At the end of each period, the firm’s signal/cash flow for the period becomes public

and the market updates beliefs about the value of the firm and the type of the agent. Importantly,

the option to “wait for a better signal”that is behind our main result is not present in any of these

papers.

Our paper also adds to the understanding of management’s decision to selectively disclose

information. Most voluntary disclosure models assume a single signal setting, in which the manager

can either disclose all of his information or not disclose at all. In practice, managers sometimes

voluntarily disclose part of their private information while concealing another part of their private

information. To the best of our knowledge, the only exceptions in the voluntary disclosure literature

in which agents may learn multiple signals are Shin (2003, 2006), which we discussed above, and

Pae (2005). The latter considers a single-period setting in which the agent can learn up to two

signals. We add to Pae (2005) dynamic considerations, which are again crucial for creating the

option value of waiting for a better signal.

Bhattacharya and Ritter (1983) examine another aspect of disclosure to capital markets. In

their model multiple firms compete in an R&D race. A firm may have information about better

technology that enables it to advance faster. The trade-off in that paper is that revealing informa-
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tion about this technology leads to better financing terms but at the same time reduces the firm’s

technological advantage over competing firms.

2 The Model

Consider the following dynamic voluntary disclosure game. There is an agent, who we refer to as

a manager of a publicly traded company, and a competitive market of risk neutral investors. The

value of the company is a realization of a random variable, V , and V is not known to the market or

the manager. All agents share a common prior over the distribution of V . There are two signals of

V , which we denote by X and Y . Conditional on V these signals are identically and independently

distributed over R2 according to some atomless distribution. We assume that the support of the

conditional distribution of a signal is independent of the realization of V and that the density of

that distribution is positive on this support.

We denote the expected value of V given the realizations of the two signals, (x, y), by:

E [V |X = x, Y = y] = P (x, y) = P (y, x) .

We assume that P is continuous and strictly increasing in both arguments.

The game has two periods, t ∈ {1, 2}. At the beginning of period 1 the manager privately learns

each of the signals with probability p. Learning a signal is independent across the two signals, so

that the probability of learning both signals at t = 1 is p2. Learning a signal is also independent

of the value of any of the signals or the value of the company. In the beginning of period 2 the

manager learns with probability p any signal that he has not yet learned in period 1.3

Each period, after potentially learning some signals, the manager decides whether to reveal

some or all of the signals he has learned and not yet disclosed: disclosure is voluntary and can be

selective. We follow Grossman (1981), Milgrom (1981) and Dye (1985) and assume that: (i) the

agent cannot credibly convey the fact that he did not obtain a signal, and (ii) any disclosure is

truthful (or verifiable at no cost) and does not impose a direct cost on the manager or the firm.

A public history at time t contains the set of signals that the agent has revealed and the

time each signal was revealed, (tx, ty). We denote the public history by hPt and let HP
t =

{∅, (x, tx) , (y, ty) , (x, y, tx, ty)} denote the set of potential public histories, where ∅ denote a history

in which no disclosure has been made. The market does not know when an agent has learned a
3All the model’s analysis and results are robust to the introduction of a third period in which the private signals

learned by the manager are publicly revealed.
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signal. For example, if the agent reveals a signal x in period 2, the market cannot directly observe

whether the manager learned that signal in period 1 or 2.

Investors observe only the public history. The agent observes both the public and a private

history. Agent’s private history at the beginning of period 1 is the signals he has learned so far,

hA1 ∈ HA
1 = {∅, x, y, (x, y)} . At the beginning of period 2 a private history is the signals that the

agent has learned and when he has learned them, hA2 ∈ HA
2 = {∅, (x, τx) , (y, τy) , (x, y, τx, τy)} ,

where (τx, τy) denote the times the agent has learned the signals X and Y , respectively. We denote

by τx, τy > 2 the case that the agent did not learn the corresponding signal.

A (behavioral) strategy of the agent is a disclosure policy which is a mapping from histories

(public and private since the agent observes both) into a decision whether to reveal any of the

signals he has observed so far and not disclosed yet.

We model investors in a reduced form: given the public history, they form beliefs about the

value of the firm and set the market price at time t equal to:

Pt
(
HP
t

)
≡ E

[
V |HP

t

]
= E

[
P (x, y) |HP

t

]
.

Note that conditional on the agent revealing both signals, the market price is Pt (x, y, tx, ty) =

P (x, y) and it is independent of when the signals were disclosed. This follows from the fact that

upon revealing both signals there is no information asymmetry about V .4 However, in other cases

investors form beliefs based on the equilibrium strategy of the agent and will infer that the agent

might have learned some signals and decided not to reveal them. For example, when only one

signal, e.g., x, has been revealed the price will be

Pt (x, tx) = Ey
[
P (x, y) |HP

t = (x, tx)
]
,

where the beliefs over the second signal, y, are formed consistently with Bayes rule and the equi-

librium strategy of the agent, whenever possible.

We assume the manager maximizes a payoff function:

U(P1

(
HP

1

)
, P2

(
HP

2

)
),

that is continuous and strictly increasing in both prices. The interpretation is that the manager’s

compensation is increasing in each period’s stock price (and/or that the probability of losing the job

4Recall the assumption that τx and τy are independed of V.
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is decreasing in each period’s stock price and the manager strictly dislikes being fired). In Section 4

we analyze the model with additional distributional assumptions and with U(P1

(
HP

1

)
, P2

(
HP

2

)
) =

P1

(
HP

1

)
+ P2

(
HP

2

)
to provide additional results.

A (perfect Bayesian) equilibrium is a profile of disclosure policies of the agent and a set of price

functions {Pt (∅) , Pt (x, tx) , Pt (y, ty) , P (x, y)} (both on and off the equilibrium path) such that

the agent optimizes given the price functions and the prices are consistent with the strategy of the

agent by applying Bayes rule whenever possible. The equilibrium is monotone if the price function

Pt (x, tx) is increasing in x for all t and tx. We restrict our analysis to symmetric monotone equilibria

in pure strategies that is, monotone equilibria in which Pt (x, tx) = Pt (y, ty) (i.e. the price does

not depend on which signal has been revealed) and the agent’s disclosure policy is deterministic

(i.e. on the equilibrium path the agent does not randomize whether to reveal a signal or not given

the history).

Remark 1 We assume that investors can tell which signal (X or Y ) is disclosed. This applies to

many real world applications where signals correspond to different dimensions of the firm’s business.

For example, signals may correspond to information about revenues and costs, represent information

about two different markets or correspond to two different projects of the firm. That said, given

the symmetric setup and our focus on symmetric equilibria, the equilibrium outcomes we describe

coincide with equilibrium outcomes in a game where investors cannot tell which signal is disclosed.

For example, X and Y may be two signals about future sales of the company and the agent may

obtain them over time.

Figure 1 summarizes the sequence of events in the model.

3 Later Disclosures Receive Better Responses

In this section we present our main result: if we compare two public histories in which only one signal

is revealed but at different times, the market price is higher in the history with later disclosure.5

In other words, the market forms its beliefs based on what is revealed and also when it is revealed

despite the value V being independent of the times the agent learns the signals.

5Since we have only 2 signals, to show the effect of time of disclosure on equilibrium prices, we have to focus on
the histories with one signal revealed.
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The manager learns ach of the signals, X
and Y, with probability p and decides
what subsets of the signals he learned to
disclose. At the end of the period
investors set the stock price equal to their
expectation of the firm’s value, P1(H1

P).

Each signal that has not yet been learned at
t=1 is obtained by the manager with
probability p. The manager may disclose a
subset of the signals he has received but not
yet disclosed at t=1. At the end of the period
investors set the stock price equal to their
expectation of the firm’s value, P2(H2

P).

t=1 t=2

Figure 1: Timeline

As mentioned above, we focus on symmetric monotone equilibria in pure strategies. Without

loss of generality, we focus on histories such that either X is disclosed before Y or both signals are

not disclosed, that is, tx ≤ ty.

Theorem 1 Consider any symmetric monotone PBE in pure strategies in which public histories

hP2 = (x, 1) and ĥP2 = (x, 2) are on the equilibrium path. Then:

P2 (x, 2) ≥ P2 (x, 1) ,

i.e., in period 2 the price upon revelation of only one signal is higher if that signal was revealed

later.

Theorem 1 characterizes a property of any symmetric monotone PBE in pure strategies. In the

rest of this section we refer to this class of PBE as "equilibrium." In Section 4 we demonstrate the

existence of a threshold equilibrium that has all these assumed properties. Moreover, we show in

Section 4 that the effect of later disclosure on the price at t = 2 is strict for a range of signals; that

there exists an x′ such that P2 (x, 2) > P2 (x, 1) for all x > x′ (and (x, 1) , (x, 2) are public histories

on the equilibrium path).

We prove Theorem 1 via a series of lemmas. Some of the proofs are in the Appendix, but we

try to present the main intuition in the remainder of this section.

We start by noting that at t = 2, since this is the last period, an agent that revealed one signal

is myopic and reveals the second signal if and only if it improves the agent’s payoff at t = 2 relative

to non-disclosure of the second signal. That is:
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Lemma 1 In any equilibrium, conditional on revealing x (at any time), the manager reveals y at

t = 2 if and only if P (x, y) ≥ P2 (x, tx) .6

Given that P (x, y) is increasing in y, the above lemma implies that at t = 2 the agent follows

a threshold strategy by disclosing y > Yx,tx , where Yx,tx is defined by P2(x, tx) = P (x, Yx,tx).7

A key concept that we define and use is that of potential disclosers. The set of potential

disclosers is defined as the set of types who, in equilibrium, learned Y either at t = 1 or t = 2,

disclosed X = x at either t = 1 or t = 2 and did not disclose Y at t = 1, i.e. types such that

{tx ≤ 2, τy ≤ 2 and ty > 1}. This is the set of agents whose behavior is described by Lemma 1.

The set of potential disclosers can be obtained by starting with the set of informed (who learned

Y ) and eliminating types that, on the equilibrium path, would have: (i) disclosed y at t = 1, (ii)

disclosed y but not x, and (iii) preferred to disclose nothing given x and y. In subsections 3.2 and

3.3 we characterize the set of potential disclosers for hP2 and ĥ
P
2 , respectively.

Our proof of Theorem 1 follows from the comparison of the sets of potential disclosers for the two

histories. Why are the sets of potential disclosers important for comparing P2 (x, t1) and P2 (x, t2)?

Prices at t = 2 are determined as follows. For any of the histories, start with two possibilities:

either the agent does not know y, i.e. he is uninformed (which happens with an ex-ante probability

(1− p)2), or he is informed (and learned y either at time 1 or 2). Then, in case he is informed,

exclude all realizations of Y that are inconsistent with equilibrium behavior given the history. This

can be done in two steps: first exclude all types other than the potential disclosers and then apply

Lemma 1 to remove additional types. That leaves only types (τy, y) that are consistent with the

history and equilibrium strategies and we can compute the price as the expected value of P (x, y)

over these types (given the disclosed value of X and the conditional distribution of Y given X). We

describe this procedure in greater detail in subsection 3.4. A diffi culty in computing the equilibrium

P2 (x, tx) is that it is a solution to a fixed-point problem: the price depends on the disclosure policy

and vice versa (i.e., Yx,tx and P2 (x, tx) are interdependent). This is why it is useful to divide the

exclusion of types after the two histories into the identification of the potential disclosers and the

application of Lemma 1, where the second step captures the fixed-point reasoning at t = 2.

6To simplify the exposition, throughout this section we assume that an agent who is indifferent will disclose his
information, but it is without loss of generality.

7Existence and uniqueness of Yx,tx follows from a) P (x, y) is increasing and continuous in y; b) Pt(x, tx) is the
expected value of P (x, y) conditional on the equilibrium beliefs about y so it is in the range of P (x, .) .
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3.1 Generalized Minimum Principle

In this subsection we introduce Lemma 2, which is an extension of the minimum principle in

Acharya, DeMarzo, and Kremer (2011), and which will help us characterize the equilibrium prices.8

Given sets A and B, and an increasing continuous function g, define SA,B as

SA,B ≡ A ∪ {B ∩ {y : g(y) < E[g(y)|y ∈ SA,B]}}.

Let us explain this definition since the notation is somewhat non-standard. Let the sets A

and B be subsets of R and have corresponding measures (not necessarily probabilistic) over these

elements, FA and FB respectively. The notation A ∪ B represents a set of R with a measure

FA∪B that is the sum of these measures (dFA∪B = dFA + dFB). For example, suppose A is the

set [−10, 10] and B is [0, 20] where FA and FB have a constant density 1 over these intervals.

The set A ∪ B corresponds to the interval [−10, 20] with measure FA,B that is twice as high on

the interval [0, 10] as compared to [−10, 0] and [10, 20]. The expectation E[g(y)|y ∈ SA,B] is

computed given the set SA,B by normalizing the corresponding measure of SA,B to be probabilistic.

B ∩ {y : g(y) < E[g(y)|y ∈ SA,B]} means that we are removing from set B all elements that

are higher than the average y in SA,B. When we remove elements from B, we do not change the

measure of the remaining elements (so that the total measure of the set B drops by the measure

of the removed elements): the re-normalization of measures happens only at the time when we

compute the overall average. In this way, as we remove more and more elements from B, the

overall average assigns higher and higher weight to the elements in A.

Here are some important properties of SA,B :

Lemma 2 Generalized Minimum Principle

(0) SA,B exists and is unique.

(i) E [g(y)|y ∈ A ∪B] ≥ E [g(y)|y ∈ SA,B], with equality if and only if any y ∈ B satisfies g(y) <

E [g(y)|y ∈ SA,B].

(ii) Suppose that B′ ⊇ B′′. Then E[g(y)|y ∈ SA,B′′ ] ≥ E[g(y)|y ∈ SA,B′ ].

(iii) Suppose that B′ ⊃ B′′. Then SA,B′′ = SA,B′ if and only if g(y) > E[g(y)|y ∈ SA,B′′ ] for all

y ∈ B′\B′′.9

8Acharya et al. (2011) established a claim that is similar to (0) and (i) of the lemma below.
9Note that (ii) and (iii) imply that if there are elements z ∈ B′\B′′ such that z < E [y|y ∈ SA,B′′ ] then

E [y|y ∈ SA,B′′ ] > E [y|y ∈ SA,B′ ].
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To see the intuition behind the existence of SA,B consider an iterative procedure of constructing

SA,B. In each step we remove from B some types that are higher than the previous average, which

decreases the average. This is obviously a converging procedure, which stops at the latest after all

types in B are removed (and then we are left with the set A to compute the expectation).

To see the intuition behind (ii) and (iii), take g (y) = y and note that whether the expectation

of Y conditional on y ∈ SA,B increases or decreases as we remove types from B depends on whether

the removed types are higher or lower than the conditional average. In particular, when we exclude

from B some y that are higher than the conditional average, this average does not change because

these values are removed anyhow in the construction of SA,B. However, when we remove from

B realizations of y that are lower than the conditional average (even if these are above-average

elements of B) then the conditional average goes up because these are below-average types in

the original set SA,B. The proof of (ii) and (iii) and the formalization of (0) and (i) are in the

Appendix.

In our application, A corresponds to the set of uniformed agents and B corresponds to the set

of potential disclosers. The function g (y) corresponds to P (x, y) given the revealed x. FA is the

probability distribution of Y conditional on X = x times the ex-ante probability that the agent

does not know Y , (1− p)2 . FB is more complicated since B is a union of sets of potential disclosers

that correspond to the different times that the agent could have learned Y and X, as we describe

below. The plan of the proof is to compare the sets of potential disclosers after the two histories

in question and apply Lemma 2 to establish the ranking of prices.

3.2 The Set of Potential Disclosers when X is Disclosed at t=1

In the next two subsections we describe in detail the sets of potential disclosers after the two

histories . We start with the set after X has been revealed at t = 1. From Lemma 1 we know that

at t = 2 the agent follows a myopic threshold policy. This implies that no disclosure of Y at t = 2

is bad news as compared to no disclosure of Y at t = 1 because investors know that the agent is

informed with a higher probability at t = 2. Hence, the corresponding prices drop over time, i.e.,

P1 (x, 1) ≥ P2 (x, 1) . As a result, an informed agent who has revealed X at t = 1 would reveal also

Y if and only if it increases the current price (i.e., he follows a myopic strategy). The following

lemma summarizes these observations:

Lemma 3 In equilibrium, conditional on disclosure of X at t = 1 :
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(i) if the agent does not reveal Y, prices drop over time, that is: P1 (x, 1) ≥ P2 (x, 1) ,

(ii) the agent’s optimal disclosure strategy for Y is myopic at t = 1 . That is, conditional on

disclosing X at t = 1 an informed agent reveals also Y at t = 1 if and only if P (x, y) ≥ P1 (x, 1) .

If the agent revealed X at t = 1, investors know that τx = 1 but there are ex-ante three

possibilities regarding the time he learned Y, τy ∈ {1, 2, 3}. We decompose the set of potential

disclosers when X is disclosed at t = 1, B1, into two disjoint subsets, B1 = B1
1 ∪B2

1 , based on when

the agent has learned y. These subsets are given by:10

B1
1 = {y|τx = τy = 1, y is consistent with only x being revealed at t = 1} ,

B2
1 = {y|τx = 1, τy = 2, y is consistent with x being revealed at t = 1} .

Let A1 denote the y coordinate of the set of uninformed agents. Before we remove from B1
1 types

which are not consistent with the public histories of potential disclosers, the sets A1, B
1
1 , B

2
1 have

measures given by the conditional distribution of Y givenX = x,multiplied by {(1− p)2 , p, p (1− p)},

respectively.

Using the notation introduced in the previous subsection, Lemma 1 implies that:

P2(x, 1) = E[P (x, y) |y ∈ SA1,B1 ], (1)

where

SA1,B1 ≡ A1 ∪ {B1 ∩ {y : P (x, y) < E [(P (x, y) |y ∈ SA1,B1)]}}.

If X is disclosed at t = 1 and Y was learned only at t = 2 then no realization of Y can be ruled

out. Therefore, B2
1 is the whole domain of Y.

On the other hand, B1
1 can be described as the intersection of three conditions, B

1
1 = C1 (x) ∩

C2 (x) ∩ C3 (x) where:

• C1 (x) : At t = 1, the agent prefers to reveal x instead of revealing both x and y. By Lemma

3, this condition is that y satisfies P (x, y) ≤ P1 (x, 1) .

• C2 (x) : At t = 1, the agent prefers to reveal x rather than y. Monotonicity of the equilibrium

implies that this condition is y ≤ x.

• C3 (x) : At t = 1, the agent prefers to reveal x rather than to hide both x and y.

10By "is consistent with" we mean the realizations of Y and τy that are consistent with the equilibrium path and
the public histories (x, tx = 1) and (x, y, tx = 1, ty = 2) .
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It is hard to fully pin down the equilibrium implications of the last condition. However, as the

next lemma shows, if Theorem 1 did not hold, that is if P2 (x, 2) < P2 (x, 1) , we obtain a simple

way to express equilibrium prices.

Lemma 4 Suppose that in equilibrium P2 (x, 2) < P2 (x, 1) . Then, there exists y∗(x) ≥ Yx,2 and

the corresponding set B′11 ≡ {y|τy = 1, y ≤ min{x, y∗(x)}}, such that if we replace B1
1 with B

′1
1 in

equation (1) , the resulting price is still P2 (x, 1) .

3.3 The Set of Potential Disclosers when X is Disclosed at t=2

When X is disclosed at t = 2, investors in general do not know whether τx = 1 or τx = 2. This

could make it more complicated to describe the price P2 (x, 2) since there would be four cases to

consider for the potential disclosers: (τx, τy) ∈ {1, 2}2 . However, as we prove in the Appendix, if

Theorem 1 did not hold, that is if P2 (x, 2) < P2 (x, 1) , we could rule out that τx = 1 if tx = 2.

Lemma 5 Suppose that in equilibrium P2 (x, 2) < P2 (x, 1) . Then the public history with tx = 2

and ty > 1 is consistent only with τx = 2 (i.e., if the agent reveals X at t = 2, investors infer that

the agent must have learned X at t = 2).

The intuition is that the contradictory assumption, P2 (x, 2) < P2 (x, 1) , provides stronger

incentives for an agent who has learned X = x at τx = 1 to disclose at tx = 1 instead of waiting

with disclosure till tx = 2. The details of the proof are in the Appendix.

Since our proof of Theorem 1 is by contradiction, from now on we maintain the assumption that

after the history ĥP2 = (x, 2) investors assign probability 1 to τx = 2. This allows us to decompose

the set of potential disclosers B2 analogously to the decomposition of B1 above. In particular, we

decompose B2 into two disjoint subsets, B2 = B1
2 ∪B2

2 :

B1
2 = {y|τx = 2, τy = 1, y is consistent with x being revealed at t = 2} ,

B2
2 = {y|τx = τy = 2, y is consistent with x being revealed at t = 2} .

The set A2 is the y coordinate of the uniformed agents. The three sets have the same corre-

sponding measures as in the case of A1 and B1.

Using the notation from Section 3.1 we can write:

P2(x, 2) = E[P (x, y) |y ∈ SA2,B2 ], (2)

13



where

SA2,B2 ≡ A2 ∪ {B2 ∩ {y : P (x, y) < E [(P (x, y) |y ∈ SA2,B2)]}}.

What realizations of Y are not consistent with equilibrium? First, for both sets, B1
2 and B

2
2 we

need to exclude types y > x because, given our assumption that the equilibrium is symmetric and

monotone, the agent would prefer to reveal y and not x in period 2 in those cases. This is in fact

the only exclusion we can make in case of B2
2 , so B

2
2 = {y|τx = τy = 2, y ≤ x}.11

Regarding B1
2 , we need to also exclude realizations of y that would have been disclosed at t = 1

if the agent knew only y at t = 1. Therefore: B1
2 = {y|τx = 2, τy = 1, y ≤ x, y ∈ ND} where ND

is the set of values of y that are not disclosed at t = 1 when the agent only knows y at t = 1.

3.4 Proof of the Main Theorem

Suppose by contradiction that P2 (x, 2) < P2 (x, 1). Following Lemma 5 we can assume that the

time when an agent discloses X coincides with when he has learned it, so that tx = τx. We divide

the type space based on when the agent learns his information. Let Lτx,τy denote the set of types

who learn X at τx and Y at τy (recall our convention that τy = 3 means that the agent did not

learn Y ). In constructing the sets of uninformed and potential disclosers, we first condition on τx

and then impose additional equilibrium conditions by removing certain types to obtain the set of

potential disclosers.

When X is disclosed at t = 1, conditioning on τx = 1 leads to L1,1 ∪ L1,2 ∪ L1,3, where the set

of uninformed, A1, corresponds to the y coordinate of L1,3 while the set of potential disclosers, B1,

corresponds to the y coordinate of a subset of L1,1 ∪ L1,2.

When X is disclosed at t = 2, conditioning on τx = 2 leads to L2,1 ∪ L2,2 ∪ L2,3 where the set

of uninformed, A2, corresponds to the y coordinate of L2,3 while the set of potential disclosers, B2,

corresponds to the y coordinate of a subset of L2,1 ∪ L2,2.

When we condition on τx = 1 the measure of L1,3 is the same as the measure of L2,3 when

conditioning on τx = 2. Since the conditional distribution of Y given X is independent of τx, when

we project on the Y coordinate both cases lead to the same set; this implies that A1 = A2. In

constructing B1 and B2 we start with L1,1 ∪ L1,2 and L2,1 ∪ L2,2, respectively. When we condition

on τx = 1 the measure of L1,1 ∪ L1,2 is the the same as measure of L2,1 ∪ L2,2 when conditioning

11We also know that y is such that the agent prefers to reveal x over keeping both x and y hidden. This can be
ignored for computation of prices because it implies only that P2 (∅) ≤ P2 (x, 2), which is independent of y.
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on τx = 2. Since the conditional distribution of Y given X is independent of τx, when we project

on the Y coordinate both cases lead to the same set.

We now eliminate types based on the equilibrium strategy to obtain the set of potential dis-

closers in both cases. From the previous two subsections, under the contradictory assumption that

P2 (x, 2) < P2 (x, 1), we can see that B2
1 ⊇ B2

2 .

Regarding the comparison ofB′11 andB
1
2 , define a setB

′1
2 = {y|τx = 2, τy = 1, y ≤ min{x, y∗(x)}, y ∈

ND} where y∗ (x) > Yx,2 was introduced in Lemma 4 (in the definition of B′11 ), so that B′12 ⊆ B′11 .

Using part (iii) of Lemma 2, if we replace B1
2 with B

′1
2 in (2) then the resulting price is still P2 (x, 2)

(because we are only adding to the set B1
2 types above P2(x, 2)).

Combining these two comparisons, we get that B′2 ⊆ B′1 for the sets used in the equations

characterizing equilibrium prices, (1) and (2) . This leads to a contradiction based on the Generalized

Minimum Principle (Lemma 2): given the ranking of the sets of potential disclosers, it must be that

P2 (x, 2) ≥ P2 (x, 1) .

4 A Threshold Equilibrium

In this section we discuss additional properties of the equilibrium and then, under additional as-

sumptions (linear payoff as well as normally distributed signals and V ), we show (by construction

of a threshold equilibrium) that the assumptions in Theorem 1 are non-vacuous and that for large

enough values of x the inequality in the last part of the theorem is strict, so that later disclosures

receive strictly better interpretation.

To see the diffi culties in fully characterizing equilibria in our game, consider first a one-signal

benchmark: the agent can only learn X and has a positive probability of learning it in any period.

In equilibrium of that model the agent follows a myopic threshold strategy: he reports x if and only

if it increases current price (and that price is by assumption increasing in the revealed signal). The

reason is that the price upon non-disclosure is decreasing over time (as investors assign a higher

and higher probability that the agent is informed) and hence there is no option value from waiting

(for details see Acharya, DeMarzo, and Kremer (2011)).

It is quite different in our model. Consider an agent who learned only one signal, X = x. In

period 2, assuming he has not disclosed anything yet, the agent is myopic and hence will disclose

if and only if

P2 (x, 2) ≥ P2 (∅) . (3)
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In a model with only one signal, P2 (x, 2) is uniquely pinned down and is independent of the

disclosure time. In contrast, in our model P2 (x, 2) depends on investors’ beliefs about Y and

these depend on the equilibrium strategy. It leads to two complications. First we have to specify

off-equilibrium beliefs when the agent discloses a value of x that is off the equilibrium path (and

the freedom to pick off-path beliefs leads to multiplicity of equilibria).12 Second, even though

E [P (x, y) |X = x] is increasing in x, it does not guarantee that P2 (x, 2) is increasing because the

disclosure policy for Y depends on the realized value of x (and depending on the realized x investors

assign a different probability to the agent being informed about Y ). If P2 (x, 2) were decreasing,

agent’s optimal strategy might fail to be a threshold one. A suffi cient condition for prices to

be increasing in x is that p is small because then the term E [P (x, y) |X = x] corresponding to

uninformed agents dominates.

The incentives to disclose for an agent who learned only one signal are even more complicated

at t = 1. That agent discloses X = x if and only if:

Ey [U (P1 (x, 1) ,max {P (x, y) , P2 (x, 1)}) |X = x] (4)

≥ Ey [U (P1 (∅) ,max {P2 (∅) , P (x, y) , P2 (x, 2) , P2 (y, 2)}) |X = x] .

The left-hand side is the expected payoff if the agent discloses today, which takes into account

that he may learn the other signal at t = 2 and then decide to disclose it.13 The right-hand side is

the expected payoff if the agent decides not to reveal the signal today, which takes into account that

in the next period he will have the option to either reveal nothing, reveal only x, or, if he learns the

other signal in the meantime, he can reveal y or both signals. Condition (4) illustrates the main

diffi culty in constructing an equilibrium: both sides of the inequality depend on x. Even if all prices

are increasing in x (which, as we discussed above, is not always guaranteed), whether agent’s best

response is a threshold strategy depends on whether the difference between the right-hand side and

the left-hand side of (4) crosses zero only once; that in turn depends on the slopes of the different

price functions and U .

Condition (4) also shows that a forward-looking agent benefits in two ways from delay of dis-

closure. First, he takes into account that he may learn Y = y so large that

P2 (y, 2) > max {P2 (∅) , P (x, y) , P2 (x, 2)} ≥ P2 (x, 1) ,

12Multiplicity of equilibria can be also caused by multiple fixed points between the beliefs of the market and the
agent’s best response to these beliefs.
13We abuse notation here for brevity: the second-period maximization problem of the agent depends on whether

he learns the second signal or not.
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in which case he will disclose only the second signal at t = 2.Moreover, if the inequality in Theorem

1 is strict, i.e., P2 (x, 1) < P2 (x, 2) , then it creates a second benefit from delay of disclosure.14 These

benefits from delay imply that the equilibrium price for disclosure of a single signal has to be strictly

higher than the non-disclosure price, i.e., P1 (x, 1) > P1 (∅) for all x disclosed on the equilibrium

path. This is in contrast to equilibrium prices if the agent cares only about the first-period price

or in a model with only one signal. For example, if the agent cared only about the first-period

price (i.e., if U (P1, P2) was constant in P2), then the agent would reveal x in period 1 if and only

if P1 (x, 1) ≥ P1 (∅) and hence there would not need to be a uniform gap between disclosure and

non-disclosure prices.15 The more the agent cares about the second-period prices, the higher is his

best-response threshold for disclosure (keeping the equilibrium prices fixed).

The strategy of the agent who knows both signals and has not yet revealed any of them is

diffi cult to describe since it is a function of two variables and the incentives to disclose the higher

signal depend on the value of the lower one (it is even diffi cult at t = 2 when the agent is myopic,

as shown in Pae (2005)). Still, one property has to hold in equilibrium: suppose NDt is the set of

x such that if the agent knows only x at t he does not disclose it (in a threshold equilibrium, these

are realizations below the threshold for an agent who knows one signal). Then, if the agent knows

both x and y, in equilibrium he does not disclose only x if x ∈ NDt (but he could disclose either

both or none of the signals). Otherwise, investors would infer that he must know the other signal

and by an unraveling argument the agent would be better off disclosing both signals.

4.1 Normal Model

As this discussion illustrates, even in a two-signal, two-period model, the equilibrium conditions

are quite complicated. To show existence of a well-behaved equilibrium we make additional as-

sumptions.

Suppose that the value of the firm, V , is normally distributed and (without loss of generality),

V has zero mean, i.e., V ∼ N(0, σ2). The private signals that the manager may learn are given

by X = V + ε̃x and Y = V + ε̃y, where ε̃x, ε̃y ∼ N(0, σ2
ε) and ε̃x, ε̃y are independent of V

and of each other. Finally, we assume that the manager maximizes sum of prices in two periods:

14Similar considerations appear when we analyze the incentives of an agent who knows both signals at t = 1 to
disclose, since if he is planning not to disclose Y, he benefits from delaying disclosure because P2 (x, 2) > P2 (x, 1) .
See the online appendix for details.
15 If the agent cares only about the second-period price (i.e., if U (P1, P2) is constant in P1), there exists an

equilibrium with no disclosure in the first period.
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The joint normal distribution of the signals implies the following conditional expectations:

E[V |X = x] = E[Y |X = x] = β1x,

P (x, y) = E[V |X = x, Y = y] = β2(x+ y),

where β1 = σ2

σ2+σ2ε
and β2 = σ2

2σ2+σ2ε
.16

Next, we define a threshold strategy. Recall that we denote the agent’s private informa-

tion/history at t = 2 by hA2 ∈ HA
2 = {(x, y, τx, τy)}. Without loss of generality, consider the

case when the agent learns X either at t = 1 or t = 2, so that τx ≤ 2, and that x ≥ y.

Definition 1 Suppose that h′A2 and hA2 are two private histories such that h
′A
2 differs from hA2 only

in the value of X, which equals x′ under h′A2 and equals x under hA2 . We say that a strategy is a

threshold strategy if for any such h′A2 and hA2 with x′ > x the following holds: if x is disclosed at

time tx ∈ {1, 2} then x′ is also disclosed at tx or earlier. The equilibrium is a threshold equilibrium

if the agent follows a threshold strategy.

The following proposition states the main result of this section and is proven in the online

appendix.

Proposition 1 For p < 0.77 there exists a threshold equilibrium, characterized by a threshold x∗,

in which:

(i) an agent who at t = 1 learns only one signal discloses it at t = 1 if and only if it is greater than

x∗. If the agent learns both signals at t = 1 and one of them is greater than x∗ then he discloses at

t = 1 either the highest signal or both signals. Disclosing a single signal x < x∗ at t = 1 is not part

of the equilibrium disclosure strategy.

(ii) there exists x′ ≥ x∗ such that P2 (x, 2) > P2 (x, 1) for any x ≥ x′ and both public histories,

(x, 2) , (x, 1) , are on the equilibrium path.

(iii) for public histories on the equilibrium path, Pt (x, tx) is increasing in x (so the equilibrium is

monotone).

16Note that β2 < β1 < 2β2 < 1 and β2(1 + β1) = β1. Also, note that E [V |X = x] = β1x would be the price after
disclosure of x if investors knew that the agent does not know Y. However, since investors assign a positive probability
to the agent knowing Y and hiding it, equilibrium prices are lower and in general more complex.
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In words, in our equilibrium there is a single threshold x∗ such that if the agent knows only one

of the signals at t = 1, he reveals it if and only if it is above x∗ (there is also a threshold at t = 2

not described in the proposition). Moreover, if the agent knows both signals, he never discloses

only one of them if it is lower than x∗ (but he may disclose both). If at least one of the signals is

above x∗, the agent reveals either one or both signals (and we do not rule out that the lower of the

two revealed signals is below x∗).

The proof of Proposition 1 is complex and long, so it is delegated to the online appendix. The

proof focuses on the incentives to disclose at t = 1 since this is where the dynamic considerations

play a crucial role. The road-map of the proof is as follows. We first assume that the manager

follows a threshold disclosure strategy. Then, for each public history we show properties of the

equilibrium prices given any threshold strategy. In particular, using the assumption that by period

2 the agent learns signal Y with probability p + p (1− p) < 0.95 (which is implied by p < 0.77)

we identify upper and lower bounds to the slopes of equilibrium prices P2 (x, 2) , P2 (x, 1) and

P1 (x, 1) (as a function of x).17 We use these bounds to show that the manager’s expected payoff

upon disclosure of a single signal is increasing faster in his signal as compared to his expected

payoff upon non-disclosure (for example, that the left-hand side of (4) is increasing faster in x than

the right-hand side, and similarly for all other private histories). This implies that it is indeed

optimal for the manager to follow a threshold strategy in the first period, consistent with the initial

assumption. We finish the proof by describing off-equilibrium beliefs and arguing that there exists

a (fixed-point) threshold such that investors’beliefs and the agent’s best response coincide.

5 Conclusions.

The vast literature on voluntary disclosure models focuses on static models in which an interested

party (e.g., a firm’s manager) may privately observe a single piece of private information (e.g., Dye

1985 and Jung and Kwon 1988). However, there are many real life circumstances in which, investors

are uncertain about the time in which a firm observes value-relevant information and the disclosure

of such information is voluntary. For instance, firms that have ongoing R&D projects can obtain

new information about the state of their projects, where the time of information arrival and its

content are unobservable to the market. Moreover, such information is not required to be publicly

17We conjecture that a threshold equilibrium exists also for values of p greater than 0.77; however, for tractability
reasons we restrict the values of p since it simplifies the proof.
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disclosed. One such example is pharmaceutical companies that get results of drug clinical trials.

Investors’beliefs about a drug’s clinical trial often have a great effect on the firm’s price and may

also affect investors’beliefs about the prospect of other projects of the firm. In such a setting, our

model predicts that when the firm discloses the results of only part of its ongoing projects, a later

disclosure gets a more positive market reaction (when keeping the disclosed information constant).

Another related example is firms that apply for patents. After the initial application, the firm first

waits to receive a notice of allowance (NOA) from the US PTO (U.S. Patent and Trademark Offi ce)

for each of the applications, which indicates that the patent is near approval. Typically, patent

applications may include many claims to be covered under the patent and the NOA informs the

firms which of the claims have been approved and which have not been approved. Following the

NOA, the firm waits for the formal issuance, indicating that the PTO has formally bestowed patent

protection.18 As Lansford (2006, page 5) indicates: “It is important to note that firms enjoy wide

discretion as to when to announce a patent event.”Lansford (2006) documents that firms indeed

time the disclosure of NOA strategically. In such circumstances, a manager deciding whether to

disclose one piece of information must take into account the possibility of learning and potentially

disclosing a new piece of information in the future. In this paper we have analyzed equilibrium

consequences of such strategic considerations.

Our main result is that, in contrast to dynamic models with a single signal, the equilibrium

reaction to voluntarily disclosed information depends not only on what is disclosed but also when,

and that later disclosures receive a more favorable reaction even though the time the agent learns

the signal is not informative per se.

Our discussion of condition (4) additionally suggests that the more the agent cares about the

first-period prices (relative to the second-period prices) the more likely he should be to reveal

information early. Multiplicity of equilibria makes it hard to precisely make/prove such a claim,

but the intuition follows from (4): if we keep prices price functions as given, the agent’s best

response is to disclose a larger set of signals at t = 1 if he cares more about current prices. Higher

weight assigned by the manager to the first period’s price can reflect, for example, managers who

face higher short-term incentives, managers of firms that are about to issue new debt or equity, a

higher probability of the firm being taken over, a shorter expected horizon for the manager with

the firm, etc. This intuition suggests a direction for new empirical investigation of how timing of
18 It typically takes a few months between the NOA and the time at which the patent is published in the US PTO

website.
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voluntary disclosure by managers correlates with their long-term incentives.
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6 Appendix

6.1 Later disclosure receives better responses

Proof of Lemma 2.

(0) For a constant c let ScA,B = A ∪ {B ∩ {(y, τy) : g(y) ≤ c}. For c → −∞ we have

that E
[
g(y)|y ∈ ScA,B

]
= E [g(y)|y ∈ A] > c and for c → ∞ we have that E

[
g(y)|y ∈ ScA,B

]
=

E [g(y)|y ∈ A ∪B] < c. From continuity we can find c∗ for which Ey
[
Sc
∗
A,B

]
= c∗. This establishes

existence.

Now suppose by way of contradiction that there are multiple solutions. Specifically, assume there

are c′ < c′′ so that E
[
g(y)|y ∈ Sc′A,B

]
= c′ and E

[
g(y)|y ∈ Sc′′A,B

]
= c′′. When we compare Sc

′
A,B to

Sc
′′
A,B we note that S

c′′
A,B ⊃ Sc

′
A,B and that for (y, τy) ∈ Sc

′′
A,B\Sc

′
A,B we have g(y) < E[g(y)|y ∈ Sc′′A,B].

This implies that Sc
′′
A,B can be represented as a union of S

c′
A,B, with the average c

′ < c′′, and a set of

types that are lower than c′′. This however, implies that Ey
[
Sc
′′
A,B

]
< c′′ and we get a contradiction.

(i) When comparing SA,B to A ∪B we note that we have excluded above average types for which

g(y) > E [g(y)|y ∈ SA,B]. This results in lower average type.

(ii) Suppose first that there exists (y, τy) ∈ SA,B′′\SA,B′ . Since B′ ⊇ B′′ it must be that

these (y, τy) ∈ B′ ∩ B′′ . From the definition of SA,B since (y, τy) ∈ SA,B′′ we conclude that

E
[
g(y)|y ∈ SA,B′′

]
> g(y) . Since (y, τy) /∈ SA,B′ , we conclude that E[g(y)|y ∈ SA,B′ ] < g(y) which

implies the claim. Hence, we will assume that SA,B′ ⊇ SA,B′′ and we consider (y, τy) ∈ SA,B′\SA,B′′

; this implies y < Ey
[
SA,B′

]
. Hence, all the elements (y, τy) ∈ SA,B′\SA,B′′ have y that is below

the average in SA,B′ which implies that Ey
[
SA,B′′

]
≥ Ey

[
SA,B′

]
.

(iii) Consider the set SA,B′′ , and note that it satisfy the definition for SA,B′ . Hence, the claim

follows from uniqueness that was proven in (0).

Proof of Lemma 4. Since, P1 (x, 1) ≥ P2 (x, 1) , we can apply part (iii) of Lemma 2 and ignore

condition C1 (x) in the definition of B′11 because by doing that we only add types s.t. P (x, y) is

above the equilibrium price.

The constraint C3(x) can be described as Πx ≥ Π∅ where:

Π∅ = U(P1 (∅) ,max {P (x, y) , P2 (x, 2) , P2 (y, 2) , P2 (∅)})

Πx = U(P1 (x, 1) ,max {P (x, y) , P2 (x, 1)})
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Π∅ is the expected payoff of a type that knows X and Y at time 1 and decides to reveal nothing;

and Πx is the payoff of the same type that decides to reveal x only. Since x is revealed alone on

the equilibrium path at time t = 1, the inequality Πx ≥ Π∅ needs to hold. We also know that on

the equilibrium path x is being disclosed at t = 2 which implies that P2 (x, 2) ≥ P2 (∅) . Condition

C2(x) implies already that y ≤ x and by monotonicity of equilibrium P2 (x, 2) ≥ P2 (y, 2) . So,

without changing the intersection of C1 (x) ∩ C2 (x) ∩ C3 (x) we can define C3 (x) by replacing Π∅

with

Π′∅ = U(P1 (∅) ,max {P (x, y) , P2 (x, 2)}).

If Πx ≥ Π′∅ for all y then the constraint C3 (x) can be ignored by defining y∗(x) = ∞. If this

condition does not hold for any y then the agent does not disclose x at t = 1 if he knows both

signals. This can be ruled out as an agent who only knows x decides to disclose it at t = 1. If for

each realization of Y he would have preferred to keep quiet then this would be the case also when

he does not know Y.

So we can focus on the case where Πx < Π′∅ holds for some but not all y. Since we assumed

P1 (x, 1) > P2 (x, 2) , this requires P1 (x, 1) < P1 (∅) . In turn, that implies: (i) For y such that

P (x, y) > P2 (x, 1) the max in both Πx and Π′∅ is attained at P (x, y) and hence Πx < Π′∅ in that

range; (ii) For y such that P (x, y) < P2 (x, 2) both Πx and Π′∅ are independent of y and it has to

be that Πx ≥ Π′∅ in that range since otherwise there would be no y for which Πx ≥ Π′∅; (iii) For

y such that P (x, y) ∈ [P2 (x, 2) , P2 (x, 1)] we have that Π′∅ is constant while Πx is increasing in y.

Hence, there exists a unique y∗ ∈ [P2 (x, 2) , P2 (x, 1)] for which Πx = Π′∅. This y
∗ defines C3(x).

Proof of Lemma 5. We first rule out the possibility that the agent has learned X at t = 1 but not

Y . Suppose by contradiction that in equilibrium the manager does not reveal X = x at t = 1 when

he knows only this signal (here we are using the restriction to pure strategy equilibria). Since, as

we assumed, the public history (x, 1) is on the equilibrium path, investors after that history would

infer that the agent must know Y. The standard unraveling argument leads to a contradiction.

Next, we rule out the possibility that the agent learns both signals at t = 1. Let ΠD(x) denote

the payoff of an agent who knows only X = x at t = 1 from disclosing x at t = 1; and let ΠN (x)

denote his payoff from not disclosing at t = 1. We have,

ΠD(x) = pEy [ΠD(x, y)|X = x] + (1− p)U (P1 (x, 1) , P2 (x, 1))

ΠN (x) = pEy [ΠN (x, y)|X = x] + (1− p)U (P1 (∅) ,max {P2 (x, 2) , P2 (∅)})
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where:

ΠD(x, y) = U(P1 (x, 1) ,max {P2 (x, 1) , P (x, y)}),

ΠN (x, y) = U(P1 (∅) ,max {P2 (x, 2) , P2 (y, 2) , P (x, y),P2 (∅)}).

Since, as we argued in the beginning of this proof, if the agent knows only X = x at t = 1

in equilibrium he discloses it, we have ΠD(x) ≥ ΠN (x). Consider now an agent who knows both

signals at t = 1 and prefers to disclose just x at t = 2. Such an agent knows at time t = 1 that he

will disclose x and not disclose y at t = 2. It must be that Π′N (x) ≥ Π′D(x) where:

Π′D(x) = U(P1 (x, 1) , P2 (x, 1))

Π′N (x) = U(P1 (∅) , P2 (x, 2)).

We claim that this leads to contradiction because P2 (x, 1) > P2 (x, 2) implies that if Π′D(x) −

Π′N (x) ≤ 0 then ΠD(x)−ΠN (x) < 0.

To show this, note that ΠD(x)−ΠN (x) is a weighted average over possible information sets of

the agent in period 2. In case the agent does not learn Y in period 2, then trivially:

0 ≥ Π′D(x)−Π′N (x) ≥ U (P1 (x, 1) , P2 (x, 1))− U (P1 (∅) ,max {P2 (x, 2) , P2 (∅)}) .

For the harder case that the agent learns Y in period 2, start with the observations that for

any increasing function U and any constants α1, α2, β1, β2, β3, β4, if:

U (α1, β1)− U (α2, β2) ≤ 0

and β1 > β2

then

U (α1,max {β1, β3})− U (α2,max {β2, β3, β4}) ≤ 0

and the inequality is strict if β3 > β2.

Applying it to our problem, we get that

Π′D(x)−Π′N (x) ≤ 0

and P2 (x, 1) > P2 (x, 2)

implies that

ΠD(x, y)−ΠN (x, y) ≤ 0

for all y and the inequality is strict for P (x, y) > P1 (x, 1) . Taking the average over possible

information sets in period 2 completes the reasoning.
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7 Online Appendix: A Threshold Equilibrium

This Appendix is organized as follows. First, in Section 7.1, we discuss a variant of a static

disclosure model that provides a numerical result and analytical insights we later use in the proof

of Proposition 1. This variant of the static model may also be of independent interest. Then,

in Section 7.2 we provide a proof of the Proposition. The proof starts with noticing properties

of the equilibrium prices if the agent follows any threshold strategy. Given these properties, we

show that the best response of the agent is indeed to follow a threshold strategy, establishing

existence of a threshold equilibrium with the properties we discussed. In the same section we also

establish the second claim in proposition 1. Finally, Section 7.3 contains omitted proofs of some

lemmas describing the sensitivity of equilibrium prices to the disclosed signals if the agent follows

a threshold strategy.

7.1 A Variant of a Static Model

Consider the following static disclosure setting, similar to Dye (1985) and Jung and Kwon (1988).

With probability p the agent learns the firm’s value, which is the realization of a random variable

S ∼ N(µ, σ2).19 If the agent learns the realization of S he may choose to disclose it. We are

interested in investors’beliefs about the firm’s value given no disclosure for an arbitrary threshold

disclosure policy. That is, what is the expectation of S given that the agent discloses s if and only

if s ≥ z, for exogenously determined z. Unlike Dye (1985) and Jung and Kwon (1988), we are not

constraining z to be consistent with optimal disclosure strategy by the agent, i.e., z is not part

of an equilibrium. We will refer to this setting as the "Dye setting with an exogenous disclosure

threshold.”

Denote by hstat (µ, z) investors’expectation of S given that no disclosure was made and given

that the disclosure threshold is z. Figure 2 plots hstat (µ, z) for S ∼ N (0, 1) and p = 0.5.

For z → ∞ none of the agents discloses, and hence, following no disclosure investors do not

revise their beliefs relative to the prior. For z → (−∞) all agents who obtain a signal disclose it, and

therefore, following no disclosure investors infer that the agent is uninformed, so investors posterior

beliefs equal the prior distribution (as for z → ∞). As the exogenous disclosure threshold, z,

increases from −∞, upon observing no disclosure investors know that the agent is either uninformed
19The reason we are considering general µ is that in our dynamic setting investors will update their beliefs about

the undisclosed signal, y, based on the value of the disclosed signal, x.
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Figure 2: Price Given No-Disclosure in a Dye Setting with Exogenous Disclosure Threshold z

or that the agent is informed and his type is lower than z. Therefore, for any finite disclosure

threshold, z, investors’expectation of S following no disclosure is lower than the prior mean (zero).

The following lemma provides a further characterization of investors’expectation about S given no

disclosure, hstat (µ, z).

Lemma 6 Consider the Dye setting with an exogenous disclosure threshold. Then:

1. hstat (µ+ ∆, z + ∆) = hstat (µ, z) + ∆ for any constant ∆; this implies that

∂

∂µ
hstat (µ, z) +

∂

∂z
hstat (µ, z) = 1.

2. z∗ = arg minz h
stat (µ, z) if and only if z∗ = hstat (µ, z∗). This implies that the equilibrium

disclosure threshold in the standard Dye (1985) and Jung and Kwon (1988) equilibrium minimizes

hstat (µ, z).

The second point follows from Lemma 2 (the Generalized Minimum Principle). Note that for all

z < hstat (µ, z) the price given no disclosure, hstat (µ, z), is decreasing in z (and for z > hstat (µ, z)

it is increasing in z).

Direct analysis of the hstat (µ, z) shows that:

Claim 1 (Numerical Result) For p < 0.95 the absolute value of the slope of hstat (µ, z) with

respect to z is uniformly bounded by 1.

We use this claim extensively in the proof below since it allow us to bound how future prices (in

particular, P2 (x, 1) and P2 (x, 2)) change with x and in turn that allows us to establish existence

of a threshold strategy equilibrium. This is where we use the assumption p < 0.77 in the proof
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of Proposition 1. Note the difference in the bound in the proposition (p < 0.77) and in the claim

(p < 0.95). The reason is that in the dynamic setup in period 2 the agent is informed about Y with

probability p+ p (1− p), which needs to be less than 0.95 for us to apply this claim.

For the analysis of our dynamic model it will prove useful to consider an even richer variant of

this model, allowing a random threshold policy. In particular, first, nature chooses publicly µ, the

unconditional mean of S. Then, with probability λi, i ∈ {1, ..,K} , where
∑K

i=1 λi = p, the agent

discloses s if and only if s ≥ zi (µ).

The reason we are considering a random disclosure policy is as follows. In our dynamic setting,

when by t = 2 the agent disclosed a single signal investors do not know whether the agent learned a

second signal, and if so, whether he learned it at t = 1 or at t = 2. Since the agent follows different

disclosure thresholds at the two possible dates, investors in equilibrium must assign a probability

distribution over different disclosure thresholds. Moreover, in the dynamic model the disclosure

thresholds for Y change with x and the disclosed x affects investors’unconditional expectation of

Y . Therefore to apply these generic results to our dynamic model we write z as a function of the

unconditional mean, µ.

Let us denote by hstat (µ, {zi(µ)}) the conditional expectation of S given no disclosure and given

that the disclosure thresholds are {zi (µ)} (assuming that {zi (µ)} are differentiable).

Lemma 7 For p ≤ 0.95 suppose that zi (µ) < hstat (µ, {zi (µ)}) and z′i (µ) ∈ [0, c] for all i. Then

d
dµh

stat (µ, {zi(µ)}) ∈ (min {1, 2− c} , 2).

Before we formally prove Lemma 7, we analyze the particular case in which the disclosure

strategy is nonrandom, i.e., K = 1. This provides the basic intuition for Lemma 7.

We start by providing the two simplest examples, for the cases where z′ (µ) = 1 and z′i (µ) = 0.

These examples are useful in demonstrating the basic logic and how it can be analyzed using Figure

2. These two examples also provide most of the intuition for the case with no restriction on z′i (µ),

which is presented in Example 3. Note that Example 3 also provides the upper and lower bounds

for the more general case in Lemma 7.

Examples (all the examples assume K = 1):

1. If z′ (µ) = 1 then d
dµh

stat (µ, z(µ)) = 1.

Using point 1 in Lemma 6 we have d
dµh

stat (µ, z(µ)) = ∂
∂µh

stat (µ, z)+z′ (µ)∗ ∂∂zh
stat (µ, z) = 1.

The intuition can be demonstrated using Figure 2. A unit increase in µ (keeping z constant)
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shifts the entire graph both upwards and to the right by one unit. However, since also z

increases by one unit, the overall effect is an increase in hstat (µ, z(µ)) by one unit.

2. If z′ (µ) = 0 and z (µ) = z∗, then d
dµh

stat (µ, z(µ)) ∈ (1, 2).

From Lemma 6 we know that ∂
∂µh

stat (µ, z∗)+ ∂
∂z∗h

stat (µ, z∗) = 1 and therefore ∂
∂µh

stat (µ, z∗) =

1 − ∂
∂z∗h

stat (µ, z∗). From Claim 1 we also know that ∂
∂z∗h

stat (µ, z∗) ∈ (−1, 0) since z∗ ≤

hstat (µ, z∗). Therefore, ∂
∂µh

stat (µ, z∗) ∈ (1, 2). The intuition can be demonstrated using

Figure 2. The effect of a unit increase in µ can be presented as a sum of two effects: (i) a unit

increase in the disclosure threshold, z, as well as a shift of the entire graph both to the right

and upwards by one unit, and (ii) a unit decrease in the disclosure threshold, z, (as z′ (µ) = 0).

The first effect is similar to Example 1 above and therefore increases hstat (µ, z(µ)) by one.

The second effect increases hstat (µ, z(µ)) by the absolute value of the slope of hstat (µ, z),

which is between zero and one.

3. In case z′ (µ) = c, we have d
dµh

stat (µ, z(µ)) ∈ (min {1, 2− c} ,max {1, 2− c}).

The previous examples are nested in this more general case. Following a similar logic, we

conclude that d
dµh

stat (µ, z(µ)) = ∂
∂µh

stat (µ, z) + c ∂∂zh
stat (µ, z) = 1 + (c− 1) ∂

∂zh
stat (µ, z(µ)).

Recall that ∂
∂zh

stat (µ, z(µ)) ∈ (−1, 0) for p < 0.95.

We next provide the a formal proof of Lemma 7.

Proof of Lemma 7

By applying Bayes role, hstat (µ, {zi(µ)}) is given by:

hstat (µ, {zi(µ)}) =
(1− p)µ+

∑K
i=1 λi

∫ zi(µ)
−∞ yφ (y|µ) dy

(1− p) +
∑K

i=1 λiΦ (zi (µ) |µ)
.

Taking the derivative of hstat (µ, {zi(µ)}) with respect to µ and applying some algebraic manip-

ulation yields:

d

dµ
hstat (µ, {zi(µ)}) = 1 +

∑K
i=1 λi (z′i (µ)− 1)φ (zi (µ) |µ)

(
zi (µ)− hstat (µ, {zi(µ)})

)
(1− p) +

∑K
i=1 λiΦ (zi (µ) |µ)

.

We start by proving the supremum of this derivative.
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Given that z′i (µ) ≥ 0 and zi (µ) ≤ hstat (µ, {zi(µ)}) for all i ∈ {1, ..,K} we have

d

dµ
hstat (µ, {zi(µ)}) ≤ 1 +

∑K
i=1 λiφ (zi (µ) |µ)

(
hstat (µ, {zi(µ)})− zi (µ)

)
(1− p) +

∑K
i=1 λiΦ (zi (µ) |µ)

(5)

≤ 1 + max
zi≤h(x)
i∈{1,...K}

∑K
i=1 λiφ (zi (µ) |µ)

(
hstat (µ, {zi(µ)})− zi (µ)

)
(1− p) +

∑K
i=1 λiΦ (zi (µ) |µ)

.

Due to symmetry, for all i ∈ {1, ..,K} the maximum is achieved at the same zi (µ) = ẑ (µ). To see

this, note that the FOC of the maximization with respect to zi (µ) is

0 =
(
φ′ (zi (µ) |µ)

(
hstat (µ, {zi(µ)})− zi (µ)

)
− φ (zi (µ) |µ)

)(
(1− p) +

K∑
i=1

λiΦ (zi (µ) |µ)

)

−
(

K∑
i=1

λiφ (zi (µ) |µ)
(
hstat (µ, {zi(µ)})− zi (µ)

))
φ (zi (µ) |µ) .

Since φ′ (zi (µ) |µ) = −α (zi (µ)− µ)φ (zi (µ) |µ) (for some constant α > 0), this simplifies to

−α (zi (µ)− µ)
(
hstat (µ, {zi(µ)})− zi (µ)

)
=

∑K
i=1 λiφ (zi (µ) |µ)

(
hstat (µ, {zi(µ)})− zi (µ)

)
(1− p) +

∑K
i=1 λiΦ (zi (µ) |µ)

+ 1.

In the range zi (µ) ≤ hstat (µ, {zi(µ)}) ≤ µ, the LHS is decreasing in zi (µ).20 The RHS is the same

for all i. Therefore, the unique solution to this system of FOC is for all zi (µ) to be equal (and

note that the maximum is achieved at an interior point since at zi (µ) = hstat (µ, {zi(µ)}) the LHS

is zero and the RHS is positive; and as zi (µ) goes to −∞ the LHS goes to +∞ while the RHS is

bounded).

Returning to the bound in (5) , that the maximum is achieved for some ẑ (µ) constant for all i, im-

plies that Example 3 (discussed above) can be used to provide the upper bound: d
dµh

stat (µ, {zi(µ)}) ≤

max {1, 2−mini {z′i (µ)}}. The lower bound can be achieved in a similar way by observing that

if we want to minimize the slope we will again choose the same zi (µ) for all i, and therefore by

Example 3 d
dµh

stat (µ, {zi(µ)}) ≥ min {1, 2−maxi {z′i (µ)}}.21 Computing uniform bounds over all

slopes z′i (µ) ∈ [0, c] yields the result.

QED Lemma 7

7.2 Existence of a Threshold Equilibrium

We now turn the proof of existence of a threshold equilibrium. The proof of Proposition 1 is

complicated and technical, so we start with a road-map.
20Since zi (x) ≤ h (x, {zi(·)}) also h (x, {zi(·)}) ≤ E [x|y] = β1x.
21For a complete analysis of this case see proof of Lemma 12 below.
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Road-map of Proof of Proposition 1

First, we assume that the manager follows some threshold strategy and establish bounds on

the slopes of equilibrium prices under the assumption that p < 0.77 (Claim 2 below). We then

show that if prices have these properties then the manager’s best response is indeed to follow a

threshold strategy. This requires looking at all possible private histories of the agent and verifying

that claim for each one of them. By appropriately choosing off-equilibrium beliefs, we then establish

the existence of a threshold equilibrium. Finally, in the last step of the proof we show that there

exists an x′ such that for x > x′ later disclosure receives a strictly better interpretation, i.e.,

P2 (x, 2) > P2 (x, 1). To keep the flow of the reasoning we delegate some of the most algebra-heavy

proofs to subsection 7.3.

Proof of Proposition 1

To establish existence of a threshold equilibrium we need to look at many possible private

histories at t = 1 and t = 2. We make the following observations about all equilibria:

1) Once an agent reveals one of the signals, he follows a myopic disclosure strategy (i.e. reveals

the second signal if and only if it increases the current price), so his disclosure policy is a threshold

policy (see Lemma 3).

2) At t = 2, if the agent has not revealed any of the signals, he reveals at least one if P2 (∅) ≤

P2 (x, 2) . For this to be a threshold strategy we need that P2 (x, 2) is increasing (as in Pae (2005)).

We establish this property below for the equilibria we construct.

3) In a threshold equilibrium we must have that at t = 1, P1 (∅) < P1 (x, 1) for any x ≥ x∗.

Otherwise an agent that leaned only the signal X at t = 1 would strictly prefer to postpone

disclosure since there is a positive probability that he will learn the second signal at t = 2 and

reveal only the second signal (if P2 (y, 2) > max {P (x, y) , P2 (x, 2) , P2 (∅)}). In addition, recall

that P2 (x, 2) ≥ P2 (x, 1) so there may be another benefit to waiting, which applies to both the

agent that learned on X at t = 1 and for an agent that learned both signals at t = 1 and will

disclose only one signal by t = 2.

4) The most diffi cult analysis is for t = 1 since the agent incentives to disclose depend not only

on the current prices but also on how his current disclosure affects continuation payoffs. Therefore,

most of our proof considers different possible private histories of the agent at t = 1.

It proves convenient to introduce a new definition:

Definition 2 Denote investors’ expectation of the value of the signal y, as of time t, given that
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the manager disclosed only x at time tx, by ht (x, tx). The notation is borrowed from the notation

of prices, Pt (x, tx).

With this notation, the equilibrium prices that play a central role in our proof are:

P1 (x, 1) = β2 (x+ h1 (x, 1)) ,

P2 (x, 1) = β2 (x+ h2 (x, 1)) ,

P2 (x, 2) = β2 (x+ h2 (x, 2)) .

The following Claim derives upper and lower bounds to the slopes of these prices:

Claim 2 Suppose that investors believe that the manager follows a threshold reporting strategy as

in Proposition 1. Then, for p ≤ 0.77 and x > x∗:

∂

∂x
h1 (x, 1)

{
= β1 if h1 (x, 1) < x

∈ (2β1 − 1, β1) if h1 (x, 1) > x
,

∂

∂x
h2 (x, 2)

{
= β1 if h2 (x, 2) < x∗

∈ (2β1 − 1, 2β1) if h2 (x, 2) > x∗
, (6)

∂

∂x
h2 (x, 1)

{
= β1 if h2 (x, 1) < x

∈ (2β1 − 1, β1) if h2 (x, 1) > x
.

This Claim established part (iii) of the Proposition. In particular, the bound on ∂
∂xh2 (x, 2)

implies that P2 (x, 2) increases in x, so the agent indeed best responds with a threshold strategy at

time t = 2. So from now on we focus on t = 1.

In proving the existence of a threshold equilibrium, we first consider partially informed agents

that learn a single signal, x, at t = 1 (τx = 1, τy 6= 1) and then we consider fully informed agents

that learn both signals at t = 1. For each of these cases we show that: (i) for suffi ciently high (low)

realizations of x the agent discloses (does not disclose) x at t = 1; and (ii) On the equilibrium path,

the difference between the agent’s expected payoff if he discloses only x at t = 1 and if he does not

disclose at t = 1 is increasing in x, implying that the agent’s best response is indeed a threshold

strategy.

Partially Informed Agents (τx = 1, τy 6= 1)

First consider an agent that knows only x at t = 1. For suffi ciently low realizations of x the

agent is always better off not disclosing it at t = 1, as he can “hide”behind uninformed agents.
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We next establish that for an agent that learns a single signal, x, at t = 1 his incentives to disclose

it are monotone in x and hence a threshold strategy is a best response (the proof of the lemma is

in the next subsection).

Lemma 8 Consider an agent that learns a single signal, x, at t = 1. If β1 ≥ 1
2 or if h2 (x∗, 1) ≤ x∗

then if investors believe that the agent follows a threshold strategy, the incentives to disclose x at

t = 1 are strictly increasing in x. That is,

∂

∂x
(E (U |τx = 1, τy 6= 1, tx = 1)− E (U |τx = 1, τy 6= 1, tx 6= 1)) > 0,

and there exists x high enough that the agent is better off revealing it than not.

Fully Informed Agents (τx = τy = 1)

We next discuss an agent that learns both signals at t = 1 (such that x > y).

Using Theorem 1, we divide these private histories into three cases:

1) y ≥ h2 (x, 2) .

2) y ∈ (h2 (x, 1) , h2 (x, 2))

3) y ≤ h2 (x, 1)

Types y ≥ h2 (x, 2) disclose y in period 2 no matter if they disclose x at t = 1 or not. Therefore,

such types will disclose x at t = 1 if

max {P1 (x, 1) , P (x, y)} ≥ P1 (∅) .

and since Claim 2 implies that the left-hand side is increasing in x, these types will follow a threshold

strategy.

Now consider the case y ≤ h1 (x, 1) so that y is suffi ciently low that it will not be disclosed at

t = 2 if it was not disclosed at t = 1 but the agent disclosed x. There are two sub-cases: either

after not disclosing x at t = 1 the agent will remain silent at t = 2 or he will disclose x. The first

sub-case is easier since the payoff from non-disclosing x is a constant and hence the incentives to

disclose are increasing in x if and only if P1 (x, 1) + P2 (x, 1) are increasing and that follows from

Claim 2. The next lemma covers the second sub-case.

Lemma 9 Consider an agent that learned both signals at t = 1 and the realization of y ≤ x is such

that y ≤ h2 (x, 1) (so that it will not be disclosed at t = 2) and β2 [x+ h2 (x, 2)] ≥ P2 (∅) . Then:
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(i) For suffi ciently high realizations of x the agent prefers to disclose x at t = 1 over not disclosing

x at t = 1.

(ii) ∂
∂x(E (U |τx = 1, τy = 1, tx = 1)− E (U |τx = 1, τy = 1, tx 6= 1)) > 0.

Proof.

(i) We need to show that for suffi ciently high x :

β2 [x+ h1 (x, 1)] + β2 [x+ h2 (x, 1)] > P1 (∅) + β2 [x+ h2 (x, 2)] .

Rearranging yields

β2 [x+ h2 (x, 1)]− P1 (∅) > β2 [h2 (x, 2)− h1 (x, 1)] .

By Claim 2 the LHS of the above inequality, β2 [x+ h2 (x, 1)] − P1 (∅), goes to infinity as x goes

to infinity. Therefore, it is suffi cient to show that h2 (x, 2)− h1 (x, 1) is bounded from above. Both

h2 (x, 2) and h1 (x, 1) are lower than β2x. From the Generalized Minimum Principle (Lemma 2) we

know that h1 (x, 1) is higher than the price given no disclosure in a Dye (1985), Jung and Kwon

(1988) setting where y ∼ N (β1x, V ar (y|x)). The price given no disclosure in such a setting is

β1x − Const, so h1 (x, 1) > β1x − Const. Hence, given that h2 (x, 2) < β1x we have h2 (x, 2) −

h1 (x, 1) < Const.

(ii) We need to show that

∂

∂x
(β2 [x+ h1 (x, 1)] + β2 [x+ h2 (x, 1)]− P1 (∅)− β2 [x+ h2 (x, 2)]) > 0,

which is identical to condition 2 in the proof of Lemma 8.

Finally, for the sub-case y ∈ (h2 (x, 1) , h2 (x, 2)) the agent will reveal y in period 2 if he reveals

x at t = 1, but will not reveal it if he does not reveal x at t = 1. This agent will reveal x today if

β2 [x+ h1 (x, 1)] + β2 [x+ y] > P1 (∅) + β2 [x+ h2 (x, 2)] .

and these incentives are monotone in x for the same reasons as in the previous lemma.

Fixed point and off-equilibrium beliefs

That finishes the analysis of all possible private histories. To summarize, we have proven that

(assuming p < 0.77) if β2 ≥ 1
2 or if or if h2 (x∗, 1) ≤ x∗, then the best response of the agent is to

indeed follow a threshold strategy. We now need to find a fixed-point for the threshold. That is,
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we need to find x∗ such that if the market believes that in period 1 the agent uses threshold x∗

then he best responds using that exact threshold. We also need to specify off-equilibrium beliefs

and it turns out that these two tasks are connected.

In a model with only one signal (static or dynamic), the only off-path history is when the agent

reveals a signal below the equilibrium threshold but that does not matter for beliefs since at that

point there is no information asymmetry. In contrast, in a model with two signals, when the agent

reveals only one of them and it is below x∗, we need to specify the market’s beliefs about the

probability that he has learned the other signal and if so, what is y. In particular, we can set the

beliefs to be arbitrarily negative about y and hence the price Pt (x, tx) to be arbitrarily low off-path,

making sure that the agent does not have incentives to reveal such x.

Therefore, any x∗ such that for all x ≥ x∗ the agent prefers (weakly or strictly) to reveal x (and

possibly also y) when he is partially informed (knows only x) or fully informed (knows both x and

y, in which case the incentives have to hold for all y ≤ x) can be used to complete a construction

of our equilibrium. (Note: a model with two-dimensional signals has multiple equilibria supported

by appropriate off-path beliefs).

To see that such x∗ exists note that as investors belief x∗ goes to infinity then the price upon

nondisclosure, P1 (∅) converges to 0 (since there is no inference from nondisclosure in the limit) while

for any x > x∗ prices P1 (x, 1) and P2 (x, 1) get arbitrarily large (and recall that we have proven

above that h2 (x, 2) − h1 (x, 1) < Const). So for suffi ciently large x∗ after all private histories in

period 1 the agent prefers to reveal x if it is above x∗ to not revealing anything.

That finishes the proof that there exists an equilibrium in threshold strategies.

Finally, we establish in the following Lemma the last part of Proposition 1.

Lemma 10 There exists an x′ ≥ x∗ such that P2 (x, 2) > P2 (x, 1) for any x ≥ x′.

Proof. In Theorem 1 we have shown that P2 (x, 2) ≥ P2 (x, 1) for any x, which implies in the

setting of section 4 that h2 (x, 2) ≥ h2 (x, 1).

As established in section 3, given disclosure of the signal x the manager behaves myopically

in the sense that he discloses the signal y (when he learned y) if and only if it increases the price

relative to the price when y is not disclosed. This holds for both t = 1 and t = 2. We can now

introduce the equilibrium inference on the sets B1
1 , B

2
1 , B

1
2 and B

2
2 that were defined in section 3.
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In particular, we adjust the set Bj
i by taking into account also the equilibrium disclosure strategy

when defining the potential disclosers and denote it by bji . The sets b
j
i for i, j = 1, 2 are given by:

b11 = {(y, τy)|τy = 1, tx = 1 and y ≤ min {x, h1 (x, 1) , h2 (x, 1)}}

b21 = {(y, τy)|τy = 2, tx = 1 and y ≤ h2 (x, 2)}

b12 = {(y, τy)|τy = 1, tx = 2 and y ≤ min {x∗, h2 (x, 2)}}

b22 = {(y, τy)|τy = 2, tx = 2 and y ≤ min {x, h2 (x, 2)}}

Note that h1 (x, 1) > h2 (x, 1) so b11 can be written as b
1
1 = {(y, τy)|τy = 1, tx = 1 and y ≤ min {x, h2 (x, 1)}}.

We next show that h2 (x, 2) > h2 (x, 1) for all x such that h2 (x, 2) > x∗. From section 3

we know that h2 (x, 2) ≥ h2 (x, 1) so we only need to preclude h2 (x, 2) = h2 (x, 1). Assume by

contradiction that h2 (x, 2) = h2 (x, 1). Since x > x∗ we have b12 ⊂ b11 and b
2
2 ⊆ b21. Moreover,

any y ∈ (x∗, h2 (x, 2)) is strictly lower than h2 (x, 2) which equals E [y|y ∈ SA,b2 ]. From part (i)

of the Generalized Minimum Principle (Lemma 2) we have h2 (x, 2) > h2 (x, 1) which leads to a

contradiction. Therefore, for all values of x such that h2 (x, 2) > x∗ we have h2 (x, 2) > h2 (x, 1).

The last thing to be shown is that there exists an x′ such that h2 (x, 2) > x∗ for any x ≥ x′.

This is immediate given that ∂
∂xh2 (x, 2) = β1 (> 0) for value of x such that h2 (x, 2) < x∗ (see

Claim 2). Note that x′ can be, but is not necessarily, greater than x∗.

QED Proposition 1.

7.3 Omitted Proofs.

In this section we provide proofs for the lemmas and claims in the previous section.

7.3.1 Proof of Claim 2

Claim 2 above is:

Suppose that investors believe that the manager follows a threshold reporting strategy as in
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Proposition 1. Then, for p ≤ 0.77:

∂

∂x
h1 (x, 1)

{
= β1 if h1 (x, 1) < x

∈ (2β1 − 1, β1) if h1 (x, 1) > x
,

∂

∂x
h2 (x, 2)

{
= β1 if h2 (x, 2) < x∗

∈ (2β1 − 1, 2β1) if h2 (x, 2) > x∗
, (7)

∂

∂x
h2 (x, 1)

{
= β1 if h2 (x, 1) < x

∈ (2β1 − 1, β1) if h2 (x, 1) > x
.

Proof of Claim 2

In the proof we use a terminology "non-binding" and "binding" case to distinguish between

ht (x, 1) ≤ x and ht (x, 1) > x. These cases are qualitatively different because in general investors

infer that if τy = 1 then y ≤ x and y < ht (x, 1). In the "non-binding" the second inequality implies

the first. In the "binding" case, y ≤ x implies the second inequality.

We start the proof with ∂
∂xh1 (x, 1).

Lemma 11 For p ≤ 0.95, ∂
∂xh1 (x, 1)

{
= β1 if h1 (x, 1) < x

∈ (2β1 − 1, β1) if h1 (x, 1) > x

Proof. As shown in Section 3, for any x that is disclosed at t = 1 such that h1 (x, 1) < x (the

non binding case), if τy = 1 the agent is myopic with respect to the disclosure of y and discloses

it whenever y ≥ h1 (x, 1). This case is captured by Example 1 in Section 7.1: an increase in the

mean of the distribution results in an identical increase in both the equilibrium beliefs and the

equilibrium disclosure threshold. The quantitative difference in our setting is that a unit increase

in x increases investors’beliefs about y by β1 (rather than by 1), and therefore also increases both

the beliefs about y and the threshold for disclosure of y by β1. As a result, for h1 (x, 1) < x we

have ∂
∂xh1 (x, 1) = β1.22

In the binding case, i.e., for all x such that h1 (x, 1) > x (if such x > x∗ exists) we know that

if τy = 1 then y < x (otherwise, the manager would have disclosed y). An increase in x increases

the beliefs about y at a rate of β1, while the increase in the constraint/disclosure threshold (y < x)

increases the beliefs about y at a rate of 1. Therefore, this is a special case of Example 3 in Section

22Since both the beliefs about Y and the disclosure threshold increase at the same rate, the probability that the
agent learned y at t = 1 but did not disclose it, conditional on him disclosing x at t = 1, is independent of x.

36



7.1, where we increase the mean by β1 and z′ (µ) ≡ c = 1
β1
. From Example 3 we know that an

increase in the beliefs about y given a unit increase in x (which is equivalent to an increase of β1

in the value of µ in Example 3) is given by β1

(
1 + (c− 1) ∂

∂zh
stat (µ, z)

)
. Substituting c = 1

β1
and

rearranging terms yields

∂

∂x
h1 (x, 1) = β1 + (1− β1)

∂

∂z
hstat (µ, z) .

Since ∂
∂zh

stat (µ, z) ∈ (−1, 0) (recall Claim 1), we have ∂
∂xh1 (x, 1) ∈ (2β1 − 1, β1).

Analyzing the effect of x on h2 (x, 2) and h2 (x, 1) is more involved and more technical. The

reason these cases are more complicated is that when pricing the firm at t = 2 investors do not

know whether the manager learned y at t = 1 or at t = 2 (in the case where the agent did in

fact learn y). Investors’inferences about y depend on when the agent learned it, and therefore the

analysis of h2 (x, 2) and h2 (x, 1) requires stochastic disclosure thresholds. This is where we use

Lemma 7.

We next analyze h2 (x, 2).

When an agent discloses x > x∗ at t = 2 investors know that τx = 2 (otherwise the agent would

have disclosed x at t = 1). Investors’beliefs about the manager’s other signal at t = 2 is set as

a weighted average of three scenarios: τy = 1, τy = 2 and τy > 2. We start by describing the

disclosure thresholds conditional on each of the three scenarios.

(i) If τy > 2 the agent cannot disclose y and therefore the disclosure threshold is not relevant.

In the pricing of the firm conditional on τy > 2 investors use E (y|x) which equals β1x.

(ii) If τy = 2 investors know that y < h2 (x, 2) and also that y < x. We need to distinguish

between the binding case and the non-binding case. In the non-binding case, where h2 (x, 2) ≤ x,

investors know that y < h2 (x, 2), so conditional on τy = 2 investors set their beliefs as if the manager

follows a disclosure threshold of h2 (x, 2). In the binding case, where h2 (x, 2) > x, investors know

that y < x, so it is equivalent to a disclosure threshold of x.

(iii) If τy = 1 investors know that y < x∗ (where x∗ ≤ x) and also y < h2 (x, 2). Here again we

should distinguish between a non-binding case, in which h2 (x, 2) < x∗ (if such case exists), and a

binding case in which h2 (x, 2) > x∗. In the non-binding case the disclosure threshold is h2 (x, 2).

In the binding case the disclosure threshold is x∗, which is independent of x.

The next Lemma provides an upper and lower bound for ∂
∂xh2 (x, 2) and since the proof uses

generic disclosure thresholds for each of the three scenarios above, it applies also to ∂
∂xh2 (x, 1).
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Lemma 12 For any p < 0.77

∂

∂x
h2 (x, 2) ,

∂

∂x
h2 (x, 1) ∈ (2β1 − 1, 2β1) .

Proof of Lemma 12.

In this proof we use a slightly different notation, as part of the proof is more general than our

setting. Note that the first part of this proof is quite similar to the proof of Lemma 7.

Suppose that x and y have joint normal distribution and the agent is informed about y with

probability p and uninformed with probability 1− p.23 Conditional on being informed the agent’s

disclosure strategy is assumed to be as follows: with probability λi, i ∈ {1, ..,K} , he discloses if

his type is above zi (x), where the various zi (x) are determined exogenously such that zi (x) ≤

h (x, {zi(x)}) for all i (which always holds in our setting). Note that
∑K

i=1 λi = p. Let’s denote the

conditional expectation of y given x and given the disclosure thresholds, zi (x), by h (x, {zi(x)}).

By applying Bayes rule, h (x, {zi(x)}) is given by:

h (x, {zi(x)}) =
(1− p)E [y|x] +

∑K
i=1 λi

∫ zi(x)
−∞ yφ (y|x) dy

(1− p) +
∑K

i=1 λiΦ (zi (x) |x)
.

Taking the derivative of h (x, {zi(x)}) with respect to x and applying some algebraic manipu-

lation (recall that ∂E[y|x]
∂x = β1) yields:

d

dx
h (x, {zi(x)}) = β1 +

∑K
i=1 λi (z′i (x)− β1)φ (zi (x) |x) (zi (x)− h (x, {zi(x)}))

(1− p) +
∑K

i=1 λiΦ (zi (x) |x)
. (8)

We start by proving the supremum of d
dxh (x, {zi(x)}).

Given that z′i (x) ≥ 0 and (zi (x)− h (x, {zi(x)})) ≤ 0 for all i ∈ {1, ..,K} we have

d

dx
h (x, {zi(x)}) ≤ β1 +

β1
∑K

i=1 λiφ (zi (x) |x) (h (x, {zi(x)})− zi (x))

(1− p) +
∑K

i=1 λiΦ (zi (x) |x)

≤ β1 + max
zi≤h(x)
i∈{1,...,K}

β1
∑K

i=1 λiφ (zi|x) (h (x, {zi(x)})− zi)
(1− p) +

∑K
i=1 λiΦ (zi|x)

.

Due to symmetry, for all i ∈ {1, ..,K} the maximum is achieved at some zi (x) = ẑ (x), which

23We apologize for the abuse of notation: the p in this proof corresponds to p+ p (1− p) in our model since this is
the probability that the agent is informed about signal Y in the beginning of period 2.
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is the same for all i. To see this, note that the FOC of the maximization with respect to zi (x) is

0 =
(
φ′ (zi (x) |x) (h (x, {zi(x)})− zi (x))− φ (zi (x) |x)

)(
(1− p) +

K∑
i=1

λiΦ (zi (x) |x)

)

−
(

K∑
i=1

λiφ (zi (x) |x) (h (x, {zi(x)})− zi (x))

)
φ (zi (x) |x) .

Since φ′ (zi (x) |x) = −α (zi (x)− β1x)φ (zi (x) |x) (for some constant α > 0), this simplifies to

−α (zi (x)− β1x) (h (x, {zi(x)})− zi (x)) =

∑K
i=1 λiφ (zi (x) |x) (h (x, {zi(x)})− zi (x))

(1− p) +
∑K

i=1 λiΦ (zi (x) |x)
+ 1.

In the range zi (x) ≤ h (x, {zi(x)}) ≤ β1x, the LHS is decreasing in zi (x).24 The RHS is the

same for all i. Therefore, the unique solution to this system of FOC is for all zi (x) to be equal

(and note that the maximum is achieved at an interior point since at zi (x) = h (x, {zi(x)}) the

LHS is zero and the RHS is positive; and as zi (x) goes to −∞ the LHS goes to +∞ while the RHS

is bounded).

Let ẑ (x) be the maximizing value. Then

d

dx
h (x, {zi(x)}) ≤ β1 +

β1
∑K

i=1 λiφ (ẑ (x) |x) (h (x, {zi(x)})− ẑ (x))

(1− p) + pΦ (ẑ (x) |x)

= β1 +
pβ1φ (ẑ (x) |x) (h (x, {zi(x)})− ẑ (x))

(1− p) + pΦ (ẑ (x) |x)
.

The right hand side of the above inequality is identical to the slope in a Dye setting with exoge-

nous disclosure threshold with probability of being uninformed (1− p) and a disclosure threshold

ẑ (x), constant in x (see the discussion in Section 7.1). In such a setting, we can think of the effect

of a marginal increase in x as the sum of two effects. The first effect is a shift by β1 in both the

distribution and the disclosure threshold. This will increase h (x) by β1. The second effect is a

decrease in the disclosure threshold by β1 (as the disclosure threshold does not change in x). Since

ẑ (x) < β1x we are in the decreasing part of the beliefs about y given no disclosure (to the left

of the minimum beliefs). Therefore, the decrease in the disclosure threshold increases the beliefs

about y by the change in the disclosure threshold times the slope of the beliefs about y given no

disclosure. Since for p < 0.95 the slope of the beliefs about y given no disclosure is greater than

−1, the latter effect increases the beliefs about y by less than β1. The overall effect is therefore

smaller than 2β1.

Next we prove the infimum of d
dxh (x, {zi(x)}).

24Since zi (x) ≤ h (x, {zi(·)}) also h (x, {zi(·)}) ≤ E [x|y] = β1x.
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Equation (8) captures a general case with any number of potential disclosure strategies. In our

particular case K = 1 where i = 1 represents the case of τy = 1 and i = 2 represents the case of

τy = 2. So, in our setting equation (8) can be written as

d

dx
h (x, {zi(x)}) = β1 +

λ1 (z′1 (x)− β1)φ (z1 (x) |x) (z1 (x)− h (x, {zi(x)}))
(1− p) +

∑2
i=1 λiΦ (zi (x) |x)

+
λ2 (z′2 (x)− β1)φ (z2 (x) |x) (z2 (x)− h (x, {zi(x)}))

(1− p) +
∑2

i=1 λiΦ (zi (x) |x)
.

When calculating h2 (x, 2) and h1 (x, 1) in our setting, the disclosure threshold, zi (x), in any

possible scenario (the binding and non-binding case for both τy = 1 and τy = 2) takes one of

the following three values: hi (x, ·) , x or x∗. Note that whenever zi (x) = h (x, {zi(x)}) we have
(z′i(x)−β1)φ(zi(x)|x)(zi(x)−h(x,{zi(x)}))

(1−p)+
∑K
i=1 λiΦ(zi(x)|x)

= 0.

For the remaining two cases (zi (x) = x and zi (x) = x∗), for all i ∈ {1, 2} we have z′i (x) ≤ 1

and (zi (x)− h (x, {zi(x)})) ≤ 0. This implies

d

dx
h (x, {zi(x)}) ≥ β1 −

(1− β1)
∑K

i=1 λiφ (zi (x) |x) (h (x, {zi(x)})− zi (x))

(1− p) +
∑K

i=1 λiΦ (zi (x) |x)
.

Using the same symmetry argument for the first order condition as before, d
dxh (x, {zi(x)}) is

minimized for some zmin (x), and hence,

d

dx
h (x, {zi(x)}) ≥ β1 +

p (1− β1)φ
(
zmin (x) |x

) (
h (x, {zi(x)})− zmin (x)

)
(1− p) + pΦ (zmin (x) |x)

.

The right hand side of the above inequality is identical to the slope in a Dye setting with exoge-

nous disclosure threshold in which: the probability of being uninformed is (1− p), the threshold is

zmin (x) , and ∂
∂xz

min (x) = 1 (see the discussion in Section 7.1). In such a setting, we can think of

the effect of a marginal increase in x as the sum of two effects. The first is a shift by β1 in both

the distribution and the disclosure threshold. This will increase beliefs about y by β1. The second

effect is an increase in the disclosure threshold by (1− β1) (as the disclosure threshold increases by

1). Since zmin (x) < β1x we are in the decreasing part of the beliefs about y given no disclosure (to

the left of the minimum beliefs). Therefore, the increase in the disclosure threshold decreases the

beliefs about y by the change in the disclosure threshold, (1− β1), times the slope of the beliefs

about y given no disclosure. Since for p < 0.95 the slope of the beliefs about y given no disclosure

is greater than −1, the latter effect decreases the beliefs about y by less than (1− β1). The overall

effect is therefore greater than β1 − (1− β1) = 2β1 − 1.
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The reasoning we have presented is independent of the actual thresholds, so the bounds apply

to h2 (x, 1) as well.

This covers the range h2 (x, 2) ≥ x∗.

For the case h2 (x, 2) < x∗ (if such case exists) we claim that ∂
∂xh2 (x, 2) = β1.

To see this, note that h2 (x, 2) is a weighted average of the beliefs about y over the three scenarios

τy = 1, τy = 2 and τy > 2. That is, we can write

h2 (x, 2) = λ1g1 + λ2g2 + (1− λ1 − λ2) g3,

where λi = Pr (τy = i|NDy) and gi = E (y|τy = i,NDy) for i = 1, 2, 3 (where i = 3 represents

the case of τy > 2). NDy stands for No-Disclosure of y (where x was disclosed at t = 2). Since

h2 (x, 2) < x∗ the disclosure threshold for both τy = 2 and τy = 1 is h2 (x, 2).

Assume, by contradiction, that ∂
∂xh2 (x, 2) > β1. Then, an increase in x increases h2 (x, 2)

by more than the increase in the expectation of y (which is β1) and therefore, the probability of

obtaining a signal below the disclosure threshold increases for both the first and the second period.

This implies that both λ1 and λ2 increase. In addition, note that the increase in g1 and in g2 is

lower than ∂
∂xh2 (x, 2) and the increase in g3 is β1 - which is also lower than ∂

∂xh2 (x, 2). The fact

that both g1 and g2 are lower than g3 leads to a contradiction, since an increase in x puts more

weight on the lower values (λ1 and λ2 increase) and in addition all the values g1, g2, g3 increase at

a rate weakly lower than the assumed increase in h2 (x, 2). A symmetric argument can be made

when assuming by contradiction that ∂
∂xh2 (x, 2) < β1. The case of ∂

∂xh2 (x, 2) = β1 does not lead

to a contradiction, as an increase in x does not affect the probabilities λ1, λ2 and the derivatives

of g1 and g2 and g3 are all equal to β1.

Finally, we analyze h2 (x, 1).

Recall that Lemma 12 applies also to h2 (x, 1). However, for h2 (x, 1) we can show tighter

bounds.

1) If h2 (x, 1) < x (the non-binding case) then when pricing the firm at t = 2 investors know

that if the agent learned y (at either t = 1 or t = 2) then y < h2 (x, 1). If the agent did not learn y

then investors use in their pricing E (Y |x) = β1x. So, the beliefs about y are a weighted average of

E (Y |y < h2 (x, 1)) and E (Y |x) = β1x. This is similar to a Dye (1985) and Jung and Kwon (1988)

setting, and therefore, in equilibrium we have ∂
∂xh2 (x, 1) = β1.
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2) Next, we show that for x such that h2 (x, 1) > x (if such case exists) ∂
∂xh2 (x, 1) ∈ (2β1 − 1, β1).

The argument is similar to the one we made in the proof of Lemma 11 (that ∂
∂xh1 (x, 1) ∈

(2β1 − 1, β1), for x such that h1 (x, 1) > x). First note that for h2 (x, 1) > x investors’beliefs about

y conditional on that the agent has learned y are independent of whether he learned y at t = 1 or

at t = 2. Moreover, given that τy ≤ 2 investors know that y < x. So, from investors’perspective,

it doesn’t matter if the agent learned y at t = 1 or at t = 2. Their pricing, h2 (x, 1), will reflect

a weighted average between E (Y |y < x) and E (Y |τy > 2, x) = β1x. From here on the proof is

qualitatively the same as in the proof for ∂
∂xh1 (x, 1) ∈ (2β1 − 1, β1), where the only quantitative

difference is the probability that the agent learned y.

QED Claim 2

7.3.2 Lemma 8

Proof of Lemma 8. For simplicity of exposition, we partition the support of x into two cases:

realizations of x for which β2 (x+ h2 (x, 2)) ≥ P2 (∅) and for which β2 (x+ h2 (x, 2)) < P2 (∅).25

Case I - β2 (x+ h2 (x, 2)) ≥ P2 (∅) (i.e. an agent that does not learn the second signal will prefer

to disclose x at t = 2)

Rewriting E (U |τx = 1, τy 6= 1, tx = 1, x)− E (U |τx = 1, τy 6= 1, tx 6= 1) yields:

β2 [x+ h1 (x, 1) + h2 (x, 1)− h2 (x, 2)]− P1 (∅)

+ pβ2

[∫ ∞
h2(x,1)

(y − h2 (x, 1)) f (y|x) dy −
∫ ∞
h2(x,2)

(y − h2 (x, 2)) f (y|x) dy −
∫ ∞
yH(x)

(h2 (y, 2)− x) f (y|x) dy

]
.

The derivative of this expression with respect to x has the same sign as

D = 1 +
∂

∂x
(h1 (x, 1) + h2 (x, 1)− h2 (x, 2)) + p [A+B + C] , (9)

where

A =
∂

∂x

∫ ∞
h2(x,1)

(y − h2 (x, 1)) f (y|x) dy

B = − ∂

∂x

∫ ∞
h2(x,2)

(y − h2 (x, 2)) f (y|x) dy

C = − ∂

∂x

∫ ∞
yH(x)

(h2 (y, 2)− x) f (y|x) dy.

25Note that on the equilibrium path we are always in case I, i.e., β2 (x+ h2 (x, 2)) ≥ P2 (∅).
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To evaluate this derivative we use the following, easy to obtain, equations:

∂

∂x
f (y|x) = −β1

∂

∂y
f (y|x) ,

∂

∂x
(F (y (x) |x)) = f (y (x) |x)

(
∂

∂x
y (x)− β1

)
.

Next, we analyze the three terms A,B, and C. Note that the derivative with respect to the

limits of integrals for A, B and C is zero.

A = −∂h2 (x, 1)

∂x
(1− F (h2 (x, 1) |x))− β1

∫ ∞
h2(x,1)

(y − h2 (x, 1))
∂

∂y
f (y|x) dy.

Integrating by parts (w.r.t. y) the term
∫∞
h2(x,1) (y − h2 (x, 1)) ∂

∂yf (y|x) dy yields:∫ ∞
h2(x,1)

(y − h2 (x, 1))
∂

∂y
f (y|x) dy

= − (h2 (x, 1)− h2 (x, 1)) f (h2 (x, 1) |x)−
∫ ∞
h2(x,1)

f (y|x) dy = − (1− F (h2 (x, 1) |x)) .

Plugging it back to A we get

A = −
(
∂h2 (x, 1)

∂x
− β1

)
(1− F (h2 (x, 1) |x)) .

Next, we calculate B:

B =

∫ ∞
h2(x,2)

h2 (x, 2)

∂x
f (y|x) dy + β1

∫ ∞
h2(x,2)

(y − h2 (x, 2))
∂

∂y
f (y|x) dy

=

(
∂h2 (x, 2)

∂x
− β1

)
(1− F (h2 (x, 2) |x)) .

Finally,

C =
(
1− F

(
yH (x) |x

))
+ β1

∫ ∞
yH(x)

(h2 (y, 2)− x)
∂

∂y
f (y|x) dy

=
(
1− F

(
yH (x) |x

))
− β1

∫ ∞
yH(x)

∂h2 (y, 2)

∂y
f (y|x) dy.

Substituting A, B and C back to (9) and re-arranging terms yields:

D = 1 +
∂

∂x
(h1 (x, 1) + h2 (x, 1)− h2 (x, 2))

− p

 (∂h2(x,1)
∂x − β1

)
(1− F (h2 (x, 1) |x)) +

(
∂h2(x,2)

∂x − β1

)
(1− F (h2 (x, 2) |x)) +(

1− F
(
yH (x) |x

))
− β1

∫∞
yH(x)

∂h2(y,2)
∂y f (y|x) dy


= (1− p)

(
1 +

∂

∂x
(h1 (x, 1) + h2 (x, 1)− h2 (x, 2))

)
+ p

[
1 + ∂h1(x,1)

∂x + ∂h2(x,1)
∂x F (h2 (x, 1) |x)− F (h2 (x, 1) |x)β1 − ∂h2(x,2)

∂x F (h2 (x, 2) |x)

+F (h2 (x, 2) |x)β1 +
(
1− F

(
yH (x) |x

))
− β1

∫∞
yH(x)

∂h2(y,2)
∂y f (y|x) dy

]
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Additional rearranging yields:

D = (1− p)
(

1 +
∂

∂x
(h1 (x, 1) + h2 (x, 1)− h2 (x, 2))

)
+ p

[
1 +

∂h1 (x, 1)

∂x
+

(
∂h2 (x, 1)

∂x
− β1

)
F (h2 (x, 1) |x)−

(
∂h2 (x, 2)

∂x
− β1

)
F (h2 (x, 2) |x)

]
+ pβ1

∫ ∞
yH(x)

1

β1
− ∂h2 (y, 2)

∂y
f (y|x) dy.

Since ∂h2(x,1)
∂x ≤ β1 (see Claim 2) and F (h2 (x, 2) |x) ≥ F (h2 (x, 1) |x) we have

D ≥ (1− p)
(

1 +
∂

∂x
(h1 (x, 1) + h2 (x, 1)− h2 (x, 2))

)
+ p

[
1 +

∂h1 (x, 1)

∂x
+

(
∂h2 (x, 1)

∂x
− ∂h2 (x, 2)

∂x

)
F (h2 (x, 2) |x)

]
+ pβ1

∫ ∞
yH(x)

1

β1
− ∂h2 (y, 2)

∂y
f (y|x) dy

= (1− p (1− F (h2 (x, 2) |x)))

(
1 +

∂

∂x
(h1 (x, 1) + h2 (x, 1)− h2 (x, 2))

)
+

+ p (1− F (h2 (x, 2) |x))

(
1 +

∂h1 (x, 1)

∂x

)
+ pβ1

∫ ∞
yH(x)

1

β1
− ∂h2 (y, 2)

∂y
f (y|x) dy

= (1− p (1− F (h2 (x, 2) |x)))

(
1 +

∂

∂x
(h1 (x, 1) + h2 (x, 1)− h2 (x, 2))

)
+

+ p

∫ yH(x)

h2(x,2)

(
1 +

∂h1 (x, 1)

∂x

)
f (y|x) dy + p

∫ ∞
yH(x)

2 +
∂h1 (x, 1)

∂x
− β1

∂h2 (y, 2)

∂y
f (y|x) dy

≥ (1− p (1− F (h2 (x, 2) |x)))

(
1 +

∂

∂x
(h1 (x, 1) + h2 (x, 1)− h2 (x, 2))

)
+ p

∫ ∞
yH(x)

2 +
∂h1 (x, 1)

∂x
− β1

∂h2 (y, 2)

∂y
f (y|x) dy

So, the following two conditions are suffi cient for the proof of Case I.

For all x:

1. ∂
∂xh1 (x, 1) + ∂

∂xh2 (x, 1) ≥ ∂
∂xh2 (x, 2)− 1.

2. ∂h2(y,2)
∂y ≤

(
2 + ∂h1(x,1)

∂x

)
1
β1
for any y > x.

Case II - β2 (x+ h2 (x, 2)) < P2 (∅) (i.e. an agent that does not learn the second signal will prefer

to not disclose x at t = 2)

The analysis of Case I was for generic bounds of the integrals h2 (x, 1) and yH (x). The difference

between Case I and Case II is that the price at t = 2 given no disclosure of y (which occurs when
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the agent does not obtain a signal y or obtains a low realization of y) is P2 (∅) in Case II and

β2 (x+ h2 (x, 2)) in Case I. Therefore, the expected payoff of the agent in Case II is less sensitive

to x than in Case I. As a result, the fact that for values of x for which β2 (x+ h2 (x, 2)) ≥ P2 (∅)

(in Case I) ∂
∂x(E (U |τx = 1, τy 6= 1, tx = 1) − E (U |τx = 1, τy 6= 1, tx 6= 1)) > 0 implies that it also

holds for β2 (x+ h2 (x, 2)) < P2 (∅).

To summarize the analysis of Partially Informed Agents, conditions 1 and 2 above are suffi cient

for both Case I and Case II. Claim 2 established that condition 2 above holds.

So, it is only left to show that also condition 1 holds. For any β1 > 1
2 , it is immediate to

see that condition 1 holds since the LHS of condition 1 is greater than 2 (2β1 − 1) > 0 and the

RHS is less than 2β1 − 1 (again by Claim 2) For the case β1 <
1
2 we use the assumption that x

∗

satisfies h2 (x∗, 1) ≤ x∗. For such x∗ we know from Claim 2 that ∂
∂xh2 (x, 1) = β1 for all x ≥ x∗.

Substituting this into condition 1 above yields ∂
∂xh1 (x, 1) +β1 ≥ ∂

∂xh2 (x, 2)− 1 which given Claim

2 is always satisfied.
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